

Agile Methods and Safety-critical Software

An Analysis Based on the Principles of Agility and Safety

Master Thesis

Christoph Schmiedinger

Submitted in fulfilment of the requirements for the degree of

Master of Science in Engineering (MSc)

University of Applied Science FH Campus Wien

Master Degree Program: Technical Management

Matriculation Number

1110536006

Supervisor:

DI (FH) Hans Tschürtz, MSc, MSc

June 8, 2013

“Intelligence is the ability to adapt to change.”

Stephen W. Hawking

Declaration:

“I confirm that this paper is entirely my own work. All sources and quotations have been

fully acknowledged in the appropriate places with corresponding footnotes and citations.

Quotations have been properly acknowledged and marked with appropriate punctuation.

The works consulted are listed in the bibliography. This paper has not been submitted to

another examination panel in the same or a similar form, and has not been published.“

Place, Date Signature

Acknowledgement

iv

Acknowledgement

I would like to thank all the people who supported and inspired me in writing my master

thesis. I am thankful for their constructive criticism, their honest feedback and their

engagement, which helped me to successfully achieve my high ambitions.

First of all I want to thank DI (FH) Hans Tschürtz, MSc, MSc for supervising the thesis.

From the very first moment that I introduced my research questions to him, he was

enthusiastic about this topic. That marked the beginning of an exceedingly successful

collaboration that continued throughout the realisation of this thesis. No matter which

questions arose, I always had an opportunity to ask as he was always open and helpful in

his counsel. In addition I particularly want to thank Hans Tschürtz for advancing me in

order for me to have the opportunity to present my work in front of a broader audience

and to get in touch with other researchers.

Furthermore, I want to thank Dr. Andreas Gerstinger and Florian Loikasek, two

colleagues from Frequentis AG. Both supported me throughout the time of my writing this

thesis by giving feedback on a regular basis. My paper was greatly enriched by their

knowledge of and experience in safety-critical and agile software development.

Last but not least I want to thank my family, my partner and my friends for their

continuous support throughout my university studies. Thank-you for motivating me when I

felt down and for your generous understanding during these stressful times of study and

research.

Abstract

v

Abstract

Increasing use of software, fierce competition and ever changing business demands lead

to paradigm changes in the area of software development. Modern, lightweight and

efficient software development approaches called agile methodologies have gained

importance as they seem to address exactly those upcoming challenges. As these

changes have come about also in the area of safety-critical software development, the

question arises of whether the adoption of agile methodologies can leverage this

particular kind of software development as well.

As there is limited experience and evidence of the adoption of agile methodologies in the

area of safety-critical software development, these approaches are frequently confronted

with prejudices. In order to dispel these objections, this thesis focuses on developing an

agile procedure model that fits both safety and agility attitudes. For the purpose of

considering both ideologies, an evaluation of their underlying principles is done to

determine the most relevant synergies and conflicts. To ensure software safety, the

model is developed in the context of EUROCAE ED-153, a guideline for software safety

assurance in the air navigation service industry.

The result of this thesis is a holistic agile procedure model that allows software teams to

be agile while ensuring safety by incorporating the necessary activities required by ED-

153. Therefore the benefits ascribed to agile methods can be leveraged in order to

develop valuable, high-quality and safety-assured software for future customer needs and

demands.

Abbreviations and Acronyms

vi

Abbreviations and Acronyms

ACM Association for Computing Machinery

ALM Application Lifecycle Management

ANS Air Navigation Service

ANSP Air Navigation Service Provider

BPM Business Process Management

CASCON Centre for Advanced Studies on Collaborative Research

CESAR Cost-efficient Methods and Processes for Safety Relevant

Embedded Systems

CMMI® Capability Maturity Model® Integration

COTS Commercial Off The Shelf

CSR Corporate Social Responsibility

CTIT Centre for Telematics and Information Technology

DASC Digital Avionics Systems Conference

DoD Definition of Done

DoD Department of Defence

DRDO Defence Research & Development Organisation

DSRoE Derived Safety Requirements on Elements

EC European Commission

EMOSIA European Model for ATM Strategic Investment Analysis

ESARR EUROCONTROL Safety Regulatory Requirements

ESEM Empirical Software Engineering and Measurement

EUROCAE European Organisation for Civil Aviation Equipment

EUROCONTROL European Organisation for the Safety of Air Navigation

FDD Feature Driven Development

FHE Functional Hazard Evaluation

FMEA Failure Mode and Effective Analysis

FOSE Future of Software Engineering

FTA Fault Tree Analysis

GSN Goal Structuring Notation

HAZOP Hazard and Operability Study

HMI Human-machine Interface

ICAO International Civil Aviation Organization

ICB IPMA Competence Baseline

ICIS International Conference on Information

ICSE International Conference on Software Engineering

Abbreviations and Acronyms

vii

ICSEA International Conference on Software Engineering Advances

IEC International Electrotechnical Commission

IFIP International Federation for Information Processing

IJCSI International Journal of Computer Science Issues

IPMA International Project Management Association

ISaPro® Integrated Safety Process

ISO International Organization for Standardization

ISSC International System Safety Conference

ISW Information Survivability Workshop

IT Information Technology

ITEA Information Technology for European Advancement

MIT Massachusetts Institute of Technology

NASA National Aeronautics and Space Administration

OFR Office of the Federal Register

OOPSLA Object-oriented Programming, Systems, Languages & Applications

OSSE Operational System Safety Evaluation

PFH Probability of Dangerous Failure per Hour

PHA Preliminary Hazard Analysis

PHI Preliminary Hazard Identification

PP Pair Programming

PSP Personal Software Process

PSSE Preliminary System Safety Evaluation

ROI Return on Investment

RSSB Rail Safety and Standards Board

RTCA Radio Technical Commission for Aeronautics

SAAPM Safety Assured Agile Procedure Model

SAE Society of Automotive Engineer

SCFL Safety Critical Function List

SEI Software Engineering Institute

SIL Safety Integrity Level

SPI² System & Software Process Improvement and Innovation

SPICE Software Process Improvement and Capability Determination

SSDA Software Safety Design Analysis

SSE System Safety Evaluation

SSRA Software Safety Requirements Analysis

SWAL Software Assurance Level

TDD Test-driven Development

TSP Team Software Process

Abbreviations and Acronyms

viii

VISSE Vienna Institute for Safety & Systems Engineering

XP Extreme Programming

Table of Contents

ix

Table of Contents

ACKNOWLEDGEMENT ..IV

ABSTRACT ... V

ABBREVIATIONS AND ACRONYMS ..VI

TABLE OF CONTENTS..IX

1 INTRODUCTION AND PURPOSE .. 1

1.1 Background .. 1

1.2 Research Objectives ... 2

1.3 Research Method ... 3

1.4 Related Work .. 4

1.5 Overview ... 7

2 SAFETY ASPECTS IN SOFTWARE DEVELOPMENT 9

2.1 Terminology ... 9

2.1.1 Safety .. 9

2.1.2 System Safety ... 9

2.1.3 Hazards ... 10

2.1.4 Safety-critical Systems .. 11

2.1.5 Safety Integrity Level (SIL) .. 11

2.1.6 Threats: Faults, Errors and Failures ... 12

2.1.7 Safety Management .. 13

2.2 Software Safety .. 14

2.2.1 Relevance ... 14

2.2.2 Challenges .. 15

2.3 Safety Standards ... 15

2.4 Safety Analysis Methods & Techniques .. 16

2.4.1 Preliminary Hazard Analysis (PHA) ... 17

2.4.2 Failure Mode and Effective Analysis (FMEA) ... 17

2.4.3 Hazard and Operability Study (HAZOP) .. 17

2.4.4 Fault Tree Analysis (FTA) .. 17

2.5 Safety Case .. 18

Table of Contents

x

3 EUROCAE ED-153 GUIDANCE ... 19

3.1 Purpose and Scope ... 19

3.2 Software Assurance Level .. 20

3.3 Software Safety Assurance System ... 22

3.3.1 Software Safety Assurance System ... 22

3.3.2 Software Safety Assurance Process .. 23

3.4 Lifecycle Processes .. 24

4 INTEGRATED PROCESS MODEL ... 26

4.1 Project Management Lifecycle ... 27

4.2 Engineering Lifecycle .. 28

4.3 Safety Lifecycle ... 29

4.3.1 Preliminary Hazard Identification (PHI) .. 30

4.3.2 Functional Hazard Evaluation (FHE) .. 30

4.3.3 Preliminary System Safety Evaluation (PSSE) .. 30

4.3.4 Software Safety Requirements Analysis (SSRA) ... 31

4.3.5 Software Safety Design Analysis (SSDA) .. 31

4.3.6 System Safety Evaluation (SSE) ... 31

4.4 Support Processes .. 31

5 AGILE SOFTWARE DEVELOPMENT METHODS .. 33

5.1 Values and Principles .. 33

5.1.1 Values ... 33

5.1.2 Principles ... 35

5.2 Technical Practices ... 36

5.2.1 User Stories ... 36

5.2.2 Test-driven Development ... 37

5.2.3 Refactoring .. 37

5.2.4 Evolutionary Design ... 38

5.2.5 Continuous Integration ... 38

5.2.6 Pair Programming .. 38

5.2.7 Collective Code Ownership.. 38

5.3 Approaches .. 39

5.3.1 Extreme Programming (XP) ... 39

5.3.2 Scrum .. 39

5.4 Scientific Research.. 40

Table of Contents

xi

5.5 Interdependencies with Traditional Approaches 41

5.5.1 Introduction to Traditional Approaches .. 41

5.5.2 Combination of Agile and Traditional Methods ... 44

6 ED-153 OBJECTIVE MAPPING .. 46

6.1 Objective Mapping Method ... 46

6.2 Integrated Process Lifecycle Overview ... 47

7 SAFETY VERSUS AGILE PRINCIPLES ... 49

7.1 Evaluation .. 49

7.2 Synergies ... 50

7.2.1 Social Factors .. 51

7.2.2 Process Factors ... 51

7.2.3 Technical Practices ... 52

7.3 Conflicts ... 53

7.3.1 Agile Values .. 53

7.3.2 Process Factors ... 55

7.3.3 Technical Practices ... 57

8 AGILE PROCEDURE MODEL .. 59

8.1 Preconditions and Constraints... 60

8.2 Pre-game Phase ... 61

8.2.1 Workshop Organisation ... 61

8.2.2 Part One: Creation of the System or the Product Vision 62

8.2.3 Part Two: Development of the Technical Concept 63

8.2.4 Part Three: Performance of the First Safety Analyses 64

8.2.5 Outputs .. 66

8.3 Iteration-driven Phase ... 67

8.3.1 Responsibility Assignment ... 67

8.3.2 Product Architecture Team .. 67

8.3.3 Software Development Team .. 69

8.3.4 Documentation .. 69

8.3.5 Overall Picture ... 70

8.4 Spin-off Phase ... 71

8.4.1 Test System Delivery ... 71

8.4.2 Operational Delivery .. 71

8.5 Wrap-up Phase .. 72

Table of Contents

xii

8.6 Compliance to Adapted ISaPro® and EUROCAE ED-153 73

8.7 Evaluation of Agile Procedure Model .. 75

8.7.1 Proof of Agility ... 75

8.7.2 Advantages & Disadvantages .. 77

8.7.3 Applicability ... 77

9 SUMMARY .. 79

GLOSSARY ... 81

BIBLIOGRAPHY ... 84

LIST OF FIGURES .. 93

LIST OF TABLES ... 94

ANNEX A: EUROCAE ED-153 MAPPING TABLES ... 95

Legend .. 95

Software Safety Assurance System ... 96

Software Safety Assessment Initiation .. 96

Software Safety Assessment Planning .. 96

Software Safety Requirements Specification ... 97

Software Safety Assessment Validation, Verification and Process Assurance 98

Software Safety Assessment Completion .. 99

Summary .. 99

Primary Lifecycle Processes ... 100

Development Process ... 100

Summary .. 105

Supporting Lifecycle Processes ... 107

Configuration Management ... 107

Quality Assurance Process ... 110

Verification Process .. 110

Validation Process .. 117

Joint Review Process .. 117

Summary .. 118

Organisational Lifecycle Processes ... 119

Management Process ... 119

Summary .. 121

Table of Contents

xiii

ANNEX B: ADAPTED INTEGRATED PROCESS MODEL 122

Project Management Lifecycle .. 122

Safety Lifecycle .. 124

Engineering Lifecycle .. 125

Supporting Processes ... 129

Compliance Analysis Results ... 131

1 Introduction and Purpose

1

1 Introduction and Purpose

1.1 Background

Increasing globalisation in combination with tougher competition is an evolution which has

been observable over the last few decades in every technology branch. Companies and

enterprises which have successfully positioned themselves as high-quality software

producers in previous years are nowadays confronted with shorter innovation cycles and

the continuously changing demands of the market [Mac03, VB09]. These effects are

further intensified by the increasing complexity of systems and software within the context

of information technology [GH12].

These factors have found their way into the domain of safety-critical applications as well

[Hei07]. Although quality and safety are of the utmost importance in this domain, the

market and customer needs have become more crucial. In terms of quality and safety,

these software systems have to comply with certain general and domain-specific safety

standard specifications. While customers consider safety compliance, quality and

reliability as a matter of course, the focus on functional requirements has been increasing

continuously [Gar09].

In order to overcome these new challenges and satisfy corresponding requirements, new

approaches within the context of software development were introduced in the 1990s.

One of these emerging modern approaches is agile software development. This term

groups various approaches whose aim is to provide a lightweight, efficient and more

flexible development process compared to traditional approaches [NMM05]. The benefits

ascribed to agile methods are attractive to software development teams working in the

safety-critical software domain as well. This attractiveness is mainly caused by the

traditional way, in which safety-critical systems are developed according to a rigorous

heavyweight process that emphasises an upfront design and the production of

documentation [GPM10]. Safety standards highly influence this process by mandating

steps to be followed or evidence to be delivered from the process. Such procedure

models are wide spread in safety-critical development due to their wide acceptance, their

thorough definition and the fact that they have been the best practices for many years

[GPM10].

Agile procedure models are challenged mainly because of their lightweight approach and

their attitude to processes and documentation, which seem to be inappropriate for the

proof of safety. Some of these perceptions are caused by prejudices about agile

approaches in projects such as the lack of discipline and/or documentation [Hol06]. In

addition to this uncertainty, there is limited industrial experience and evidence of how to

successfully adopt these practices in the domain of safety criticality. Those are the main

reasons why industry is still so cautious when it comes to the adoption of these modern

software practices [LBB+02].

1 Introduction and Purpose

2

One business area, in which these previously indicated trends can actually be observed

is the field of software development for air traffic management. A draft plan for global air

navigation capacity and efficiency, published by the International Civil Aviation

Organisation (ICAO), outlines the fact of extensive software use, particularly in the area of

air navigation services [ICAO12]. In this plan, which focuses on the years until 2028, the

ICAO mentions the terms “cloud applications” and “software as a service” [ICAO12].

These references strongly indicate that software is one of the key enablers for meeting

the future strategic objectives in air navigation.

In such safety-critical areas, standard specifications for the development of hardware and

software are common today. Due to the fact that the use of software is still increasing, it is

becoming necessary to develop guidelines specifically focused on software development.

This is especially important because of the huge multiplicity of approaches and

programming languages which are used nowadays [HSV+12, Kin11]. In August 2009, the

European Organisation for Civil Aviation Equipment (EUROCAE) issued the guidance

ED-153, which particularly applies to the software parts of systems within air navigation

services [EUROCAE09]. ED-153 and its related standard specifications in other industry

segments only mark the beginning of an engagement in safety assurance within software

systems and applications. In combination with the various development approaches

available, these aspects will be some of the main topics that safety has to deal with in the

near future [LCF13].

1.2 Research Objectives

As pointed out in the introductory chapter, there is a lot of uncertainty about adopting

agile methods within the area of safety-critical software development. Furthermore,

research about the suitability and applicability of agile methods in such industries is still at

an early stage [GPM10] as successful adoptions and experiences reported in literature

are very rare.

These concerns lead to the following central research question:

Can agile methodologies be used to develop safety-critical software

applications?

By raising this research question, the following hypothesis can be proposed:

It is possible to use agile methodologies successfully in the development of

safety-critical software, if that usage is diligent and thoughtful. To achieve this,

an appropriate procedure model including suitable methods must be used.

The scope of this thesis is to investigate why agile methodologies conflict with safety-

related issues and whether these conflicts can be overcome by using an adapted agile

procedure model for safety-critical software development. Within such a model, it is

necessary to consider the tasks and activities required in order to ensure safety.

Therefore the whole investigation is accomplished in the context of EUROCAE ED-153

[EUROCAE09], a guideline on software safety assurance. The results of this investigation

1 Introduction and Purpose

3

should support the decision-making of organisations that deal with the issue of adopting

agile methodologies within the safety-critical area.

1.3 Research Method

In order to answer the research question and prove the proposed hypothesis, a defined

research method is necessary. Figure 1 depicts the four steps of the research method

that is applied in this thesis.

Elaboration
Analysis of safety standard specification ED-153 and elaboration

of its requirements for the software development process

Analysis
Analysis of agile methods and corresponding

experiences in the safety-critical area

Investigation
Comparison of agile and safety principles and

elaboration of their potential synergies and conflicts

Development
Development of an agile procedure model that fits

all previously investigated and gathered information

Figure 1: Research Method

The first phase of the research method consists of the analysis of the EUROCAE ED-153

[EUROCAE09] guideline for software safety assurance and the elaboration of its

requirements regarding the software development process. In the analysis, all applicable

objectives are mapped to processes of a generic development procedure model called

ISaPro® [TKH12] that is specifically tailored to the safety-critical industry. This mapping

should help to identify all necessary activities in order to be compliant.

The analysis of agile methods including their values, principles and approaches is the

focus of the second phase. Furthermore this chapter deals with the technical practices

that are commonly used in conjunction with agile methods. An overview of the published

results of scientific researches and the interdependencies between agile and traditional

approaches complete this research phase.

1 Introduction and Purpose

4

The third phase of the research method comprises the evaluation of the principles of

safety and agility and shows how these principles interact. In order to identify their

potential synergies and conflicts, the attitudes, processes and technical practices of both

approaches are examined.

The development of an agile procedure model that fits into safety-critical software

development is the central topic in the fourth and last phase of the research method. This

model is created considering the principles of safety and agility. In addition, this research

phase is influenced by the requirements that are imposed on the software development

process by ED-153.

1.4 Related Work

As outlined in the Background (see chapter 1.1), agile methodologies have advantages in

environments that are challenged by continuously changing demands and requirements.

To leverage these benefits, the topic of adopting agile methodologies in the area of

safety-critical development is of great interest. This is also supported by numerous

scientific papers that were published in the last few years. The most relevant articles

including their results are described in this section.

An Iterative Approach for Development of Safety-Critical Software and Safety Arguments

written by Ge, Paige and McDermid [GPM10], is a conference paper that deals with

aspects of this thesis. Their paper addresses the notion of up-front design and the key

difficulties that appear when developing safety-critical software iteratively.

Their first result was the generation of a generic software development lifecycle model for

agile methods in order to reduce different agile methods to a common denominator. This

lifecycle consists of four phases: preparation, planning, short iterations to release, and

integration. When the generic agile model was compared to traditional approaches, the

authors identified two major differences within the traditional approaches: the use of an

up-front design and a very monolithic way of implementation. [GPM10]

Regarding the first issue, the up-front design, the authors agree with the agile

methodology of creating the shape of the system first, followed by developing its detailed

design iteratively during implementation. Nevertheless this shape must be detailed

enough to provide sufficient input for the hazard analysis (also recommended in other

papers and studies by Garg [Gar09] and Bozheva et al. [BHI+05]). In order to achieve this

sufficiency, the system architecture model and the main functional requirements for each

component have to be produced in this initial phase. [GPM10]

The second issue raised by the paper is the iterative development of safety-critical

software. The main concerns referred to the plan to produce the safety argument of the

system iteratively. In order to answer these concerns, the authors recommend the

1 Introduction and Purpose

5

construction of modular safety arguments, e.g. for each software module. The system

safety argument finally consists of all modular component safety arguments and one

argument that deals with the interactions of those single modules. [GPM10]

Their conclusion is that agile practices may not change the nature of the entire safety-

critical development procedure model, but can improve the agility of this development bit

by bit [GPM10].

In another paper entitled Agility and Lean for Avionics the author Chenu [Che09]

describes how agile approaches have brought value to avionics. In the paper he points

out that in his opinion safety analyses are not feasible to assess the amount and different

kinds of software errors. Therefore organisations developing safety-critical software

should impose rigour on the development process in order to be confident that safety is

ensured.

According to Chenu [Che09] agile practices, particularly test-driven development (see

chapter 5.2.2), contribute to more efficient development and bring value to the

certification of the software. The author even stated that, in his opinion, automatic and

repeatable tests have a great advantage over manual ones. A conclusion he reached

having witnessed distracted and bored employees testing safety-critical software on

several projects in which he was involved. [Che09]

Based on Chenu’s experience, Extreme Programming (see chapter 5.3.1) as an agile

methodology can be used for software that has to be certified. The main problems during

the certification process are caused by requirements and traceability. That is why these

issues have to be considered very carefully when adopting an agile method. In Chenu’s

opinion, agile values and principles (see chapter 5.1) fit with safety-critical software

development apart from the stance on documentation. As documentation is essential for

certification, it has to be written and developed iteratively. [Che09]

Another hypothesis proposed by Chenu [Che09] is that “[…] it is easier to make a correct

program fast than it is to make a fast program correct”. Therefore he recommends

preventing premature code optimisation. Instead, performance should be continuously

monitored and improved based on these hard facts. Another important consideration

when adopting agile practices is the determination of the iteration length. Chenu [Che09]

recommends using longer intervals, e.g. four weeks, in safety-critical developments, due

to the high complexity that such projects usually have to deal with.

Chenu’s [Che09] conclusion is that agile and lean practices help to grow high-integrity

products, while reducing costs. Both organisational and engineering practices have to be

combined in an effective way while imposing rigour and strict discipline on them.

Technical excellence has to be the target of utmost importance in order to succeed.

1 Introduction and Purpose

6

A related article – older but still valid – written by Poppendieck and Morsicato [PM02] in

2002 is XP in a Safety-critical Environment. Like Chenu’s article, it discusses the

experience of using Extreme Programming for developing software that has to be

certified. The authors noticed a conflict between the identification of all hazardous

conditions in the beginning and the safe-guarding that all upcoming changes do not

influence existing hazard controls. [PM02]

Morsicato [PM02] proposed the hypothesis that “[…] it is dangerous to think that all the

safety issues will be exposed during an initial design”. According to his opinion, it is far

better to re-evaluate safety issues on a regular basis, based on what has been educed

from development (this is also recommended in another study by Vuori [Vuo11]). This

continuous task should be facilitated by a parallel refactoring of the software in order to

achieve a simple design. This simplicity would subsequently lead to a safer design,

allowing the developers to concentrate on safety. [PM02]

A further important point of consideration is the unit test framework of the software. The

authors recommend an emphasis on rigorous in-line testing with the help of unit tests

(which is in line with statements provided by Bozheva et al. [BHI+05]). The advantage of

this approach is that in the case of problems appearing, the developers just have to take

a look at the interfaces for the causes of the defects. [PM02]

The conclusion of the article was that the examined project did not pass the audit by the

customer in the end. However, this was not because of the fact that they were using

Extreme Programming. It was simply the fact that the organisation had no defined

process for such an agile development method. Therefore the auditor objected to the fact

that the development team was allowed by the organisation to implement new

methodologies unilaterally. Based on their experiences, both authors agreed that it is

definitely possible to implement agile approaches in the industrial area of safety-critical

systems. [PM02]

Many scientific articles such as these three indicate that the adoption of agile

methodologies within the development of safety-critical software is possible. In most

cases this is done either by describing how to adopt single agile values or principles in

order to fit safety-critical developments or by conducting a survey in the software

development industry. Only a minority of the academic articles that have been published

had the research goal of developing a kind of agile procedure model that is designed for

applying agility and safety. Given that, this thesis proposes the development of a holistic

agile procedure model based on the objectives of EUROCAE ED-153 and the values of

agility in order to generate scientific findings for the adoption of agile methods.

1 Introduction and Purpose

7

1.5 Overview

This thesis is structured as follows:

Chapter 2 introduces the basic safety aspects when dealing with software development. It

aims to give an overview of the various terms used, the characteristics of software safety,

the safety standard families and some of the methods and techniques used during the

analyses.

Chapter 3 deals with the introduction to the EUROCAE ED-153 [EUROCAE09] guidance

on software safety assurance. First it describes its definition of the purpose, scope and

perception of a software safety assurance system. In addition it points out all the

applicable processes and objectives of ED-153 within the scope of this thesis.

Chapter 4 presents a generic procedure model which is especially tailored to safety-

critical development: the ISaPro® [TKH12]. It facilitates the determination of activities that

are necessary to satisfy the relevant objectives of the EUROCAE ED-153 guidance.

Chapter 5 gives an overview of the agile methodologies. This includes their values,

principles and the technical practices that are recommended by them. Additionally, this

chapter refers to relevant scientific studies and the interdependencies between agile and

traditional software development methods.

Chapter 6 explains the model of the objective mapping process from the ED-153

guidance to the ISaPro® framework. In addition it presents the condensed results of this

process in a tabular formatted overview.

Chapter 7 outlines the evaluation of the principles of safety and agility. Furthermore this

chapter deals with the identification of potential synergies and conflicts between the two

approaches.

Chapter 8 is the core part of this thesis. It describes the agile procedural model which has

been developed for organisations adopting agile methodologies in the area of safety-

critical development. The chapter comprises a detailed description of the model, its

compliance with ED-153 and its evaluation in relation to certain topics.

Chapter 9 concludes the thesis with a summary of the results.

Annex A comprises the detailed results of the objective mapping process, where each

objective of ED-153 is mapped to one ISaPro® process. It also includes a summary of

ISaPro® processes showing which of these processes fulfils which ED-153 objectives.

1 Introduction and Purpose

8

Annex B consists of the adapted integrated procedure model that has been tailored and

extended in order to be compliant with EUROCAE ED-153. This model is described by a

comprehensive list of activities for each ISaPro® process. In addition, these activities are

linked to the different phases of the agile procedure model (developed in chapter 8) in

which they should be conducted.

2 Safety Aspects in Software Development

9

2 Safety Aspects in Software Development

Due to the focus of this thesis on safety assurance within the development of software,

this chapter will deal with the basics of safety and in particular the safety aspects in

software development.

2.1 Terminology

Apart from the term >safety-critical systems<, a few basic terms should be defined in

order to achieve a common point of view. Many different definitions of the various terms

used in this paper can be found in scientific literature, therefore only the most suitable of

these sources will be cited.

2.1.1 Safety

The term >safety< is defined in many different ways in literature and standard

specifications. For the purpose of this thesis the definition by the British Rail Safety and

Standards Board (RSSB) is a very appropriate one. It points out that it is not only users

who are affected by the systems’ or products’ safety; the whole general public might be

affected too and therefore such safety issues should be avoided.

“The avoidance of death, injury or poor health to customers, employees,

contractors and the general public, caused by occupational accidents, incidents

or hazards, also avoidance of damage to property and the environment.”

Rail Safety and Standards Board [RSSB93]

According to Avižienis et al. [ALR+04], safety is embedded in the holistic concept of

dependability. To be more precise, safety is, along with availability, reliability, integrity and

maintainability, an attribute of dependability as depicted in Figure 2. Dependability is

defined as the ability to deliver a service that can justifiably be trusted. Safety is defined

as the absence of catastrophic consequences affecting the user(s) and environment in

this context. [ALR+04]

Figure 2: Dependability Attributes [based on ALR
+
04]

2.1.2 System Safety

System safety is defined in many military standards (e.g. DoD MIL-STD-882E [DoD12])

and also by the US Air Force Safety Agency as follows:

2 Safety Aspects in Software Development

10

“The application of engineering and management principles, criteria, and

techniques to optimize all aspects of safety within the constraints of operational

effectiveness, time, and cost throughout all phases of the system life cycle.”

Air Force Safety Agency [AFSA00]

System safety is considered as a term with quite a vast range of meanings. To accurately

define system safety it is necessary to decide whether the system consists of only one

simple element or numerous subsystems which presumably have various dependencies

on each other [Wel02]. This thesis will primarily focus on complex software systems with

various subsystems and therefore the term >software safety< – defined in chapter 2.2 – is

more appropriate.

The activities covered by system safety focus on identifying, analysing and assessing

hazards in order to set preventive measures to avoid hazardous situations (see chapter

2.1.3) [NASA04].

2.1.3 Hazards

According to Leveson [Lev11], a hazard is defined as a system state or set of conditions,

which, together with a particular set of worst-case environmental conditions, will lead to

an accident or loss. Some definitions use a set of events rather than a set of conditions,

but both can be used if they are used consistently. Another definition provided by

EUROCAE [EUROCAE09] is that a hazard is a potential risk situation in which one or

more causes lead to one or more consequences that are a potential source of harm (see

Figure 3).

AND
 /

OR

AND
 /

OR

AND
 /

OR

Malfunctions or Failures

A

B

C

D

A

B

C

D

Effects

Hazard

Figure 3: Relationship between Malfunctions or Failures, Hazards and Effects [based on

EUROCAE09]

Regardless of which of the definitions is chosen, hazards are basically kinds of

preconditions that occur on the boundaries of a system and can lead to an incident or

2 Safety Aspects in Software Development

11

accident. To ensure the detection of hazards, it is necessary to define the system as

accurately as possible to investigate its boundaries for possible hazards. System safety is

responsible for implementing controls for any of the identified hazards that cannot be

accepted as tolerable risk. These controls reduce either the likelihood of the cause or the

impact of the consequence or both [EUROCAE09].

2.1.4 Safety-critical Systems

A term that has to be distinguished from system safety (see chapter 2.1.2) is >safety-

critical system<. This is synonymous with the term or >safety-relevant system<. Both

terms are widely used and their distinction has become blurred. Safety-critical systems

tend to be those systems in which a single failure leads to a fatality or strongly increases

the risk to the environment [SS04]. Systems in which a single failure is not necessarily

critical, and another coincident failure of some other item must occur for there to be a

fatality, tend to be called safety-relevant systems [SS04].

The term >system safety< – defined in chapter 2.1.2 – is the term for a process-oriented

view of safety aspects. Safety-critical systems are in fact those systems which could

cause harm to humans, property or the environment. According to Knight [Kni02], the

term could be considered within a broader scope:

“If the failure of a system could lead to consequences that are determined to be

unacceptable then the system is safety-critical.”

John C. Knight [Kni02]

Along with the term >safety-critical systems<, there are specific industries or domains

which are generally considered as safety-relevant. This is based on the fact that there is a

high probability that system failures will cause harm to humans, property or environment.

These domains are:

 Aerospace and aviation

 Automotive industry

 Pharmaceutical industry

 Automation

 Defence

 Infrastructure

2.1.5 Safety Integrity Level (SIL)

The safety integrity levels were introduced in various specification standards (including

IEC 61508 [IEC10]). They require that a certain safety level has to be assigned to

processes which have insufficient mitigation from potential hazards. In order to minimise

their potential impact it is necessary to add safety functions or systems to these

processes. This should ensure functional safety. In the IEC 61508 specification there are

four SILs, where SIL 1 is the lowest and SIL 4 the highest level of safety integrity [IEC10].

SILs are basically a measure of the reliability of the safety-related system regarding its

avoidance of dangerous failures. So the assignment of the level is based on the required

2 Safety Aspects in Software Development

12

availability of a safety-related function. The higher the risk of the system, the higher the

required availability has to be and depending on that the higher the allocated SIL is.

[Hya03]

Table 1 shows the failure rates for dangerous failures per safety integrity level according

to IEC 61508 [IEC10]:

Safety
Integrity

Level (SIL)

Average frequency of a
dangerous failure of the safety

function (PFH) [h
-1

]

4 ≥ 10
-9

 to < 10
-8

3 ≥ 10
-8

 to < 10
-7

2 ≥ 10
-7

 to < 10
-6

1 ≥ 10
-6

 to < 10
-5

Table 1: Safety Integrity Levels (SIL) [IEC10]

Due to the focus on failure rate, the SIL is more appropriate on hardware than on

software (see the quote by Nancy Leveson in chapter 2.2). Therefore different standards

use different classifications for categorising systems into classes of safety-criticalness.

Due to the focus of this thesis on software and EUROCAE ED-153 [EUROCAE09], their

level, called the Software Assurance Level (SWAL), will be introduced in chapter 3.2.

2.1.6 Threats: Faults, Errors and Failures

According to Avižienis et al. [ALR00], threats are factors endangering dependability (see

chapter 2.1.1). Figure 4 shows the division of these threats into three categories.

Figure 4: Categories of Threats [ALR00]

When a service implements a specified system function, a correct service is delivered. In

the case that the delivered service deviates from the correct service it is called a system

failure. There are various reasons why a system may fail: probably the system does not

comply with the specification or the specification does not accurately describe the

function. More precisely, the failure is the transition between a correct and an incorrect

service. The timespan until the service is restored is called outage. [ALR00]

The trigger for such a failure is an error which reaches the service interface. A service

failure therefore means that at least one of the external states of the system deviates

from the correct service. The cause for this deviation is called the error. It is important to

2 Safety Aspects in Software Development

13

mention that many of the errors do not reach the service interface and therefore remain

unnoticed. [ALR00, ALR+04]

A fault is the suspected cause of an error. It might be the case that many of the faults are

dormant. When the fault actually leads to an error, it is considered as an active fault.

[ALR00, ALR+04]

As the previous three paragraphs indicate, faults are preconditions for errors and errors

are preconditions for failures. Figure 5 depicts this fact, which is, according to Avižienis et

al. [ALR00], also called the “fundamental chain of threats”. Failures are always visible at

the system boundary, whereas faults and errors cannot be perceived there. The last

transition after the failure has occurred can lead to different situations. Failures may

cause new or dormant faults or even potential sources of harms, e.g. hazards (see also

Figure 3). [ALR00]

Fault Error FailureCausation Activation Propagation

Figure 5: Fundamental Chain of Threats [ALR00]

2.1.7 Safety Management

Safety management is a business-like approach to safety; according to Schedl et al.

[SW08] it is defined as follows:

“Safety management is a pro-active and reactive discipline aiming at minimising

the risk of an accident as far as reasonable practicable.”

Gabriele Schedl et al. [SW08]

According to this quote the philosophy of this approach focuses on prevention. Another

important fact is that the responsibility for systematic safety management has to start at

the very top of the organisation and cascades down the hierarchy. Safety managers are

the main driving force within the context of the company for establishing and co-ordinating

an effective strategy for safety management. These employees have to ensure that the

scope of safety management is companywide. As with the majority of management

systems and processes, there is a strong focus on the continuous improvement of safety

management as well. [SW08]

Safety management consists of the following key aspects:

 Documents (e.g. a safety policy or safety handbook) [Lev11]

 Competence and independence of safety engineering employees [IEC10]

 Safety lifecycle including safety activities using well-known methods (see chapters

2.4 and 4.3) [IEC10]

2 Safety Aspects in Software Development

14

2.2 Software Safety

Due to the fact that this thesis deals with safety-critical software, the term >software

safety< is more appropriate. In general this term customises the term >system safety<

(see chapter 2.1.2) to software.

One of the major differences between software and system safety is that software cannot

cause harm directly to humans or the environment. However software is typically used for

operating an electronic system (e.g. a computer) or controlling other hardware parts;

therefore it can either lead directly to a hazard or it can be used to control hazards. This

kind of software is called hazardous software. [NASA04]

“Software does not fail – it just does not perform as intended.”

Nancy Leveson [NASA04]

Safety-critical software includes the previously mentioned hazardous software and all

kinds of software which influence it. According to the NASA Software Safety Guidebook

[NASA04] the term covers the following types of software:

Software that …

 … controls or monitors hazardous or safety-critical hardware or software

 … provides information which is necessary for safety-related decisions

 … performs off-line processes or is used for analysis of safety-critical software

(e.g. software for verification of hazard controls, modelling and simulation

programs used for simulating the operational behaviour of a safety-critical system)

 … resides on the same physical platform with safety-critical software

2.2.1 Relevance

This section outlines the practical relevance of software safety in today’s systems. First of

all, the general use of software in our lives has been increasing continuously. This is

mainly caused by the attempt to leverage software for all the actions in daily life that can

be automated. In combination with the aims of reducing costs and gaining performance,

this is leading to a steady trend toward higher complexity [BV10]. The fact of increasing

interoperability between systems is further reinforcing that trend [Wal04].

In 2009 a report by NASA determined that the size of flight software in space shuttles is

growing exponentially over time (1969 – 2005) [Dvo09]. According to Bozzano et al.

[BV10] similar trends can be observed in other domains such as avionics, automotive and

switching systems. Along with software size, software complexity is increasing too. This

can be seen from the increasing number of functions and states and the discontinuous

behaviour of software itself, where a little variation in one program input could cause a

great variation in one output [BV10].

2 Safety Aspects in Software Development

15

Apart from software size and complexity, there is a social aspect leveraging the trend

towards considering safety in software systems as well. As many examples show, the risk

acceptability in society is continuously decreasing. This can be associated with the

majority of customer or user needs in accordance with the Kano model, where the

innovations of yesterday are the basic needs of tomorrow [KST+84]. The passenger

airbag in a car is one example of a safety function which is basic equipment nowadays

but in the early 1990s was only part of upscale configurations.

These trends indicate that there is a need to engineer complex cross-linked safe software

systems in order to meet the high expectations and requirements of today’s society.

2.2.2 Challenges

Reliability and availability are central topics of system safety (see chapter 2.1.2). The IEC

for example defines the safety integrity levels (SILs) (see chapter 2.1.5) as values for

reliability with respect to dangerous failures [IEC10]. Reliability is in turn coupled with

availability under the premise of constant maintainability [MTL10].

Reliability is especially important when it comes to hardware such as mechanical or

electronic components. These components have an average life span under certain

conditions which is influenced by environmental and operational impacts. By means of

statistics mean failure rates can be calculated. In contrast, the reliability of software is

hard to determine. As the quote by Leveson (see chapter 2.2) indicates, software does

not fail, break down or wear out. But software has a large number of states in comparison

to hardware. Thus it is not economical or even possible in larger software projects to test

all those states. These facts lead to the conclusion that all software failures are caused by

systematic faults in development or operation. Therefore IEC recommends qualitative

techniques and evaluations. [IEC10, NASA04]

While reliability of software cannot be measured exactly or tested exhaustively, NASA

[NASA04] recommends that the following system characteristics be determined for

estimating the effort that is required to meet the targeted safety level:

 Degree of control over safety-critical functions

 Software system complexity

 Timing criticality of control actions

2.3 Safety Standards

Since safety is such a sensitive issue, there are various safety standards, regulations and

various types of guidance in place. Typically safety-critical systems require certification or

assessment based on specific standards in order to permit the transition into operation.

These standards define a number of accepted ways of developing safe systems.

2 Safety Aspects in Software Development

16

In the course of the development of safety-critical systems there is the challenge of

having dozens of different safety standards to fulfil. While some of them are generic

approaches, others concentrate on specific domains or industries. Figure 6 provides an

overview of safety standards grouped by their application. While IEC 61508 [IEC10] is a

generic standard, many other industry-standards have been derived from it, such as the

ISO 26262 for the automotive industry. In particular industries, such as avionics or in the

military industry, even custom standard specifications are available, which in fact have

some further derived and related standards.

IEC 61 508

ISO 26262
(automotive)

CENELEC
EN 50 128 (rail)

IEC 61 513
(nuclear)

IEC 63 204
(medical)

IEC 61 511
(process)

Generic

RTCA DO-178B
(USA)

Avionics

RTCA DO-278RTCA DO-178C

Def Stan 00-56
(UK)

Military

MIL STD 882E
(USA)

ED-12B (EU)

ED-153 (EU)

Air Traffic
Control

Figure 6: Safety Standard Families [based on Gar12, SW08]

Common topics within safety standards are:

 Description of development approach including all relevant activities

 Detailed description of safety process or procedure model

 Scope of risk and hazard identification techniques

 List of necessary formal safety analysis throughout the whole lifecycle

 List of required documents for approval

2.4 Safety Analysis Methods & Techniques

In order to ensure system or software safety it is common to use generally accepted

safety analysis methods and techniques. This chapter gives a brief overview of the most

reasonable ones. It has to be pointed out that during the safety lifecycle (see chapter 4.3)

it is necessary to employ more than one specific method. An example of the combination

2 Safety Aspects in Software Development

17

of different methods and techniques is the usage of an inductive (e.g. FMEA, see chapter

2.4.2) and a deductive (e.g. FTA, see chapter 2.4.4) method.

2.4.1 Preliminary Hazard Analysis (PHA)

The preliminary hazard analysis (PHA) uses the preliminary hazard list (which is initially

created and based on the technical concept of the system) as its input and further

expands and develops it. The first task is to identify general hazard groups in order to

simplify, cluster and categorise the preliminary hazard list. The PHA is one of the most

critical analyses because of its first attempt to isolate the hazards of a system. It will

provide reasonable hazard controls and indications where further analyses are needed

due to the criticality of the system’s part. [Hya03, Vin06]

2.4.2 Failure Mode and Effective Analysis (FMEA)

The Failure Mode and Effective Analysis (FMEA) is an inductive bottom-up approach

used to determine the reliability of a system. It is designed for evaluating a system or a

subsystem to identify all possible failures of each individual component including a

forecast of their effects on the analysed level and the next higher level. This is done by

assessing all possible hazards by determining their likelihoods and severity. Furthermore

this list of possible failures is augmented by recommendations for mitigating the identified

hazards in order to reduce or even remove them. FMEA supports the safety engineering

process on different levels during the whole lifecycle, although the analysis is commonly

used very early in the system development on the component level. [BV10, Vin06]

2.4.3 Hazard and Operability Study (HAZOP)

According to Vincoli [Vin06] the definition of the hazard and operability study (HAZOP) is

a “systematic investigative study, which has the goal to examine potential deviations of

operations that could result in problems or hazards”. This method is particularly

appropriate for analysing the system’s interfaces. Critical success factors of this method

are on the one hand the experience and expertise of the attendees and on the other hand

the communication process between them. The objectives of the study are to predict

accidents by using information from previous analyses (e.g. the preliminary hazard

analysis) and to discuss them in order to identify specific safety aspects and

requirements. In addition it is of importance that the necessary reference data is available

for supporting the analysis. This approach should result in the determination of

appropriate design considerations for the purpose of accident prevention. [RCC99, Vin06]

2.4.4 Fault Tree Analysis (FTA)

The fault tree analysis (FTA) is a deductive method of logic which is especially used for

very complex or detailed systems. In contrast to FMEA (see chapter 2.4.2), this method is

a top-down approach, whereby the logic moves from the general to the specific level.

Therefore it is used for examining possible conditions that lead to an undesirable event.

This event is considered as the general or known outcome of a possible series of events

and is the top event in this analysis. The aim of this analysis is the identification of

2 Safety Aspects in Software Development

18

specific events that contribute to the top event, which results in the construction of a tree:

the fault tree. The contributing factors can be clustered by their origin in order to allow

accurate identification of where breakdowns can occur, if and what relationships exist,

and which interfaces are affected. [Eri05, Vin06]

2.5 Safety Case

The safety case is also often referred to as the safety justification or safety assessment

report [Sto96]; Wilson et al. [WKM97] define its purpose as follows:

“The purpose of a safety case is to present a clear, comprehensive and

defensible argument supported by calculation and procedure that a system or

installation will be acceptably safe throughout its life (and decommissioning).”

Wilson et al. [WKM97]

In order to fulfil safety certification standards, it is necessary to provide structured

arguments and supporting evidence that the risks associated with the system have been

considered carefully and appropriate actions have been taken in order to minimise them.

The safety case therefore contains the description of the design and assessment

methods used in the development process of a system. As this document is designed for

third parties as well, it has to be as precise and clear as possible. This should help to

support external parties such as certification or public authorities in confirming the safety

of a product or system. [Sto96, TKH12, WKM97]

The representation of such a safety case can be either textual or in a graphical notation.

While in most cases the textual ones are single linear documents that link results

contained in other deliverable documents [WKM97], the graphically notated ones mostly

use the so-called “Goal Structuring Notation” (GSN), developed by Kelly [Kel98]. This

graphical technique is used to explicitly document the elements of any argument and the

relationships between them. The main purpose is to demonstrate how claims concerning

the safety of a system are divided into sub-claims until it can be supported by a body of

evidence, e.g. the documented results of a safety analysis [TKH12]. Further advantages

of GSN are its reusable patterns, reduced fault probability and the standardised

framework [KW04, York11], which are further reasons why this method is widely used in

industry [KW04].

3 EUROCAE ED-153 Guidance

19

3 EUROCAE ED-153 Guidance

While chapter 2.3 provides a brief overview of the safety standard families, this chapter is

intended to introduce EUROCAE ED-153 [EUROCAE09]. EUROCAE ED-153 is a

guideline for software safety assurance specifically in the area of air navigation service

(ANS). Henceforth this guideline will be used as the basic input for the development of

the agile procedure model (see chapter 8).

3.1 Purpose and Scope

Today a rising percentage of safety-critical air navigation service functions rely on

automated processes, which are supported by software in many cases [EUROCAE09,

Zem08]. This fact gives rise to new challenges for ensuring the required level of safety for

this set of functions. The European Organisation for Civil Aviation Equipment

(EUROCAE), a non-profit organisation which deals with the standardisation of electronic

equipment in aviation, has therefore published the ED-153 [EUROCAE09] guidance. This

guideline gives information on how to assure that the risk associated with deploying

software within air navigation services is reduced to an acceptable level.

Content of the ED-153 guideline [EUROCAE09]:

 Recommendations and requirements for providing software safety assurance

o Per major process in the software lifecycle

o Per software assurance level (SWAL) (see chapter 3.2)

 References to other standards dealing with safety assurance (e.g. IEC 61508

[IEC10])

 Guidance on how to partially satisfy European Union regulations (EC No 482/2008

[EU08])

The scope of the document is defined as all software components across their overall

lifecycle within the ANS system. Furthermore the guideline is limited to the ground

segment of air navigation services and explicitly excludes aircraft software. A key element

of the document is software safety and therefore all references made to software lifecycle

data are to be understood in the context of safety assurance.

Figure 7 shows the various levels of guidance which are provided by EUROCAE ED-153

[EUROCAE09]. At the top there are two relevant regulations imposed by the European

Union, which cover the contexts shown in Table 2 [EU04, EU08].

Regulation Context

(EC) No 552/2004 Interoperability of the European Air Traffic Management Network

(EC) No 482/2008
Establishing a Software Safety Assurance System to be Implemented by Air
Navigation Service Providers

Table 2: European Union Regulations partially satisfied by Guidance of ED-153 [EU04, EU08]

3 EUROCAE ED-153 Guidance

20

Chapter 3 of ED-153 provides guidance on how to set up and operate a software safety

assurance system (see chapter 3.3). Chapters 4 to 7 of ED-153 deal with the primary,

supporting and organisational life cycle processes and additional objectives of the

process (see chapter 3.4). This is depicted in Figure 7, where the software development

products (the inputs) are transformed in the lifecycle process to software safety

assurance products (the outputs). The requirements and recommendations demanded by

the guidelines in these chapters are provided in full detail in Annex A of this thesis.

Figure 7: Levels of Guidance provided by ED-153 [EUROCAE09]

3.2 Software Assurance Level

ED-153 introduces the software assurance level (SWAL) as a strategic management

method which is used for allocating the appropriate effort that should be spent on safety

assurance per software component. Hence the software assurance level is an

assessment procedure for software components to define the recommended rigour of the

assurance process throughout the whole lifecycle. The rigour in generating the assurance

evidence should be in line with the risk presented by the software.

The allocation is done on the basis of the likelihood of software malfunction and the

severity of the consequences caused by these malfunctions (see also chapter 2.1.3 for

the definition of hazards). The SWAL does not replace the safety requirements for the

software; it is itself one of the requirements. To be compliant with the SWAL level, the

3 EUROCAE ED-153 Guidance

21

software supplier has to take systematic actions to ensure that sufficient evidence of the

product and process is available. It has to provide the evidence that its software meets an

appropriate level of confidence and assurance in order to contain the risk presented by

the system. [EUROCAE09]

ED-153 offers four levels of software assurance, where the first level (SWAL 1) is the

most rigorous one, followed by three levels where the rigour decreases from level to level.

Table 3 shows the dependency between the likelihood of a consequence (in ED-153 the

consequence is called the “effect” [EUROCAE09]) and its severity. For detailed

information on severity classes, likelihoods and examples please refer to the official ED-

153 standard [EUROCAE09].

 Effect Severity
 Class

 Likelihood of
 generating such an effect

1 2 3 4

Very Possible SWAL 1 SWAL 2 SWAL 3 SWAL 4

Possible SWAL 2 SWAL 3 SWAL 3 SWAL 4

Very Unlikely SWAL 3 SWAL 3 SWAL 4 SWAL 4

Extremely Unlikely SWAL 4 SWAL 4 SWAL 4 SWAL 4

Table 3: Allocation of SWAL Levels in accordance with Effect Likelihood and Severity

[EUROCAE09]

In comparison with SIL (see chapter 2.1.5), the SWAL is more focused on software. The

determination does not depend on availability and reliability, but rather on quantitative

and qualitative effects that cause harm to humans or property. Figure 8 provides a

mapping of the assurance levels of IEC 61508 to those of the ED-153 guideline.

Compliance details can be found in Annex A of the ED-153 guideline.

SWAL 1

SWAL 2

SWAL 3

SWAL 4

SIL 4

SIL 3

SIL 2

SIL 1

ED-153 IEC 61508

Partial Compliance

Partial Compliance

Partial Compliance

Partial Compliance

Figure 8: Mapping of SWAL (ED-153) to SIL (IEC 61508) [EUROCAE09]

3 EUROCAE ED-153 Guidance

22

3.3 Software Safety Assurance System

EUROCAE ED-153 [EUROCAE09] defines a complete software safety assurance

system, comprising overall objectives and a software safety process with the following

stages:

 Assessment Initiation

 Assessment Planning

 Requirements Specification

 Assessment Validation, Verification & Process Assurance

 Assessment Completion

Due to the fact that ED-153 [EUROCAE09] primarily addresses Air Navigation Service

Provider (ANSP), some of the described objectives and tasks within the safety process

are not relevant for the software supplier. Annex B of the guideline provides three

different role and responsibility scenarios to fulfil the above-mentioned objectives and to

achieve conformity with the defined safety process. The least appropriate one is the

scenario, where the ANSP internally performs the software development. The other two

scenarios differentiate between the delivery of a major system and delivering only

software. There are only three extra processes which have to be carried out by the

software supplier, when it delivers a system rather than only software:

 Process of showing the isolation of software components

 Process for initiating the software safety assessment

 Process for analysing the system requirements and system architectural design

Based on its focus, the thesis will further concentrate on the most comprehensive

scenario, in which the software supplier delivers an equipment part of a system which

fulfils the requirements of the ANSP. The context for this scenario is also applicable to the

lifecycle processes which are discussed in chapter 3.4.

3.3.1 Software Safety Assurance System

Table 4 shows the objectives of the software safety assurance system which are

applicable for the software supplier. Those tasks in which the software supplier actually

takes the lead are marked in green. These objectives are derived from the requirements

of the commission regulation (EC) No 482/2008 [EU08] and shall ensure the assignment

of responsibilities to the ANSP and the software supplier. This regulation sets only high-

level criteria which are covered by the objectives of the individual life cycle processes as

well (see chapter 3.4). Due to this fact they are only described by their tasks and are not

mapped within the objective mapping process in chapter 6. [EUROCAE09]

3 EUROCAE ED-153 Guidance

23

Legend: A … Accept; C … Contribute; L … Lead

Objective ANSP
SW

Manufacturer
Objective N°

ED-153

Implementation L C 3.0.1

Requirements Correctness and Completeness A L 3.0.2

Requirements Traceability Assurance A L 3.0.3

Unintended Functions A L 3.0.4

SWAL Allocation L C 3.0.5

Requirements Satisfaction Assurance A L 3.0.6

Configuration Management Assurance A L 3.0.7

Assurance Rigour Objective L C 3.0.8

SWAL Assurance C L 3.0.10

Software Modifications A L 3.0.12

COTS (Commercial Off The Shelf) A L 3.0.13

Isolation L 3.0.14

All On-line Aspects of SW Operational Changes L C 3.0.15

Argument Production L C 3.0.17

Table 4: Software Safety Assurance System Objectives [EUROCAE09]

The tasks within these objectives that are of importance for a software supplier are

[EUROCAE09]:

 Requirements correctness and completeness shall ensure that there is a correct

and complete statement of what is required by the software.

 Requirement traceability assurance shall ensure that requirements are traced to

the level required by the SWAL.

 Unintended functions shall ensure that software implementation does not contain

functions, which may affect safety.

 Requirements satisfaction assurance shall ensure that the software satisfies its

requirements by a defined level of confidence.

 Configuration management assurance shall ensure that all assurances are derived

from its dependencies.

 SWAL assurance shall provide confidence based on arguments and evidence as

defined by SWAL.

 Software modifications shall ensure that software changes lead to a re-assessment

of the safety impact and SWAL allocation.

 COTS shall ensure that the same level of confidence is provided for software

products that are not developed by the software supplier.

 Isolation shall ensure that software, which cannot be isolated, has the same SWAL

as the most critical component allocated.

3.3.2 Software Safety Assurance Process

In addition to the previously shown objectives of the software safety assurance system

(see chapter 3.3.1) there are also roles and responsibility recommendations for the

3 EUROCAE ED-153 Guidance

24

software safety assurance process, which are defined in Table 5 [EUROCAE09]. These

objectives are mapped within the objective mapping process to the integrated process

model (see chapter 4) in chapter 6 and Annex A.

Legend: A … Accept; C … Contribute; L … Lead

Objective ANSP
SW

Manufacturer
Objective
N° ED-153

Software Safety Assessment Initiation

System Description C/A L 3.1.1

Operational Environment C/A L 3.1.2

Regulatory Framework C/A L 3.1.3

Applicable Processes and Guidance C/A L 3.1.4

Risk Assessment and Mitigation Process Output L C 3.1.5

Software Safety Assessment Planning

Software Safety Assessment Approach C/A L 3.2.1

Software Safety Assessment Plan C/A L 3.2.2

Software Safety Assessment Plan Review C/A L 3.2.3

Software Safety Assessment Plan Dissemination C/A L 3.2.4

Software Safety Requirements Specification

Failure Identification C/A L 3.3.1

Failure Effects C/A L 3.3.2

Assessment of Risk L C 3.3.3

Software Requirements Setting C/A L 3.3.4

Software Safety Assessment Validation, Verification and Process Assurance

Software Safety Assessment Validation C/A L 3.4.1

Software Safety Assessment Verification C/A L 3.4.2

Software Safety Assessment Process Assurance C/A L 3.4.3

Software Safety Assurance C/A L 3.4.4

Software Safety Assessment Completion

Document Software Safety Assessment Process
Results C/A L 3.5.1

Software Safety Assessment Documentation
Configuration Management C/A L 3.5.2

Software Safety Assessment Documentation
Dissemination C/A L 3.5.3

Table 5: Software Safety Assessment Process Responsibilities [EUROCAE09]

3.4 Lifecycle Processes

In addition to the objectives for a software safety assurance system (see chapter 3.3),

EUROCAE ED-153 defines objectives for the primary, supporting and organisational

lifecycle processes [EUROCAE09], which are listed in Table 6. Some of these sub-

processes are considered as out of scope for this thesis, which mainly focuses on the

primary process development and its supporting processes. These considered processes

3 EUROCAE ED-153 Guidance

25

are also in line with the integrated process model ISaPro® (see chapter 4), which is the

basis for the mapping process of chapter 6.

Process Applicable

Primary Lifecycle Processes

Acquisition Process

Supply Process

Development Process

Operation Process

Maintenance Process
Supporting Lifecycle Processes

Documentation Process

Configuration Management Process

Quality Assurance Process

Verification Process

Validation Process

Joint Review Process

Audit Process

Problem Resolution Process
Organisational Lifecycle Processes

Management Process

Infrastructure Process

Improvement Process

Training Process

Table 6: Lifecycle Processes of ED-153

4 Integrated Process Model

26

4 Integrated Process Model

In order to be compliant with safety standards, various approaches to process-oriented

models and lifecycles are described in literature. Some of these approaches are lifecycle

models that are derived from several standards (see chapter 2.3); some of them are

procedures that are proposed by different authors (e.g. [Sto96]). In addition, further

standards are demanded by industry such as CMMI (Capability Maturity Model®

Integration) or SPICE (Software Process Improvement and Capability Determination).

In order to handle all the required standards, the Vienna Institute for Safety & Systems

Engineering (VISSE) developed an integrated process model called ISaPro®. It provides

a framework for meeting the criteria of the required standards in one process model.

Furthermore, ISaPro® provides an approach for meeting the objectives in a systematic

way. This ensures that the required activities are done at the right time in the right phase.

[TKH12]

The approach consists of three in-parallel, well synchronised lifecycles and their

supporting processes. ISaPro® includes all the necessary disciplines for developing a

safety-critical system. By synchronising the individual processes, this framework further

ensures that all lifecycles have the necessary interdependencies between them. On the

timeline the whole procedure model is divided into four sections that are called “spaces”

[TKH12]. The problem space is performed in the pre-project phase; the modelling and

solution spaces are executed during the development project. After completion of the

development project, specifically the system development, the model is continued in the

form of system maintenance in the operation space. [TKH12]

Figure 9 depicts how the different lifecycles are synchronised over time within the four

defined spaces. If the targeted system is complex, further analyses have to be done. To

break down the software part into software components, the light-coloured processes

within the solution space are necessary.

PHI FHE PSSE SSE OSSE

Problem Space Modeling Space Operation Space

Concept
Req.
Eng.

Design
Component Design, Implementation,

Integration & Test
Maintenance Disposal

System Safety
Lifecycle

Engineering
Lifecycle

SSRA SSDA

Solution Space

SW
Req.

SW
Arch.

Project
Initialisation

Project
Planning

Project
Controlling

Proj.
Close-
Down

Maintenance
Project

Management
Lifecycle

Configuration Management, Quality Management
Verification & Validation

Support
Processes

Development Project Maintenance Project

Figure 9: Adapted ISaPro
®
 Framework [based on TKH12, TSS12]

4 Integrated Process Model

27

During the problem space, the main aim is to identify the costs and the lead time of the

project. One of the main cost drivers in safety-critical development projects is the targeted

SIL (see chapter 2.1.5), which is identified in the preliminary hazard identification (PHI).

Within the modelling space the requirements and design of the system have to be

thoroughly defined. Based on those definitions, the safety objectives and derived

requirements are identified in the functional hazard evaluation (FHE) and preliminary

system safety evaluation (PSSE) processes. These outputs are considered in the project

planning process, where the magic triangle (time, cost and scope) of the project is

defined [CG06]. The solution space ensures that all safety objectives and requirements

will be fulfilled by coordinating the planned activities. After the development of the system

is completed, usually the phase of operation starts. Due to the focus of this thesis on the

development of systems, this phase will be considered as out of scope. [TKH12]

The following sections will briefly describe the main aims and activities of each lifecycle

and how they interact with each other as a full framework in order to ensure the safety

goals are met. The description starts with the project management lifecycle, followed by

the engineering lifecycle, which is necessary to deliver inputs for the safety activities,

described in the processes of the safety lifecycle. The chapter concludes with a brief

introduction to the support processes that facilitate the three lifecycles.

4.1 Project Management Lifecycle

In accordance with the focus on development, the project management lifecycle consists

of four processes: the initialisation, the planning, the controlling and the close-down

processes. The use of project management is necessary for transforming a complex

project into manageable activities in order to ensure that the magic triangle is balanced all

the time. [Gar06]

The project initialisation process includes the determination of the scope of the project, a

preliminary budget and a time schedule. These outputs are heavily dependent on the pre-

estimated SIL, which is identified in the PHI, and therefore must include all prospective

safety activities [TKH12].

The planning process comprises a detailed plan that includes all the work packages

within the project lifecycle. These packages are again dependent on the required safety

activities, which were defined during the safety planning process [TKH12]. In addition, the

parallel defined system requirements and design will further increase the accuracy of the

project plan.

The controlling process includes all the activities necessary to manage deviations of the

prospective plan. It consists of periodically planned controlling meetings, in which the

planned activities are compared with the current status of the project. In the case of

deviations, steering measures have to be arranged in order to keep the project on track.

4 Integrated Process Model

28

The project close-down process ensures that the outstanding work is done, the project

documentation is finished and the scope for the post-project phase is defined. In addition,

the project team has to transfer all the lessons learned into the line organisation. Finally

the team itself has to be dissolved.

4.2 Engineering Lifecycle

The engineering lifecycle of the ISaPro® integrated process model consists of the creation

of a concept, the requirements engineering, the design, the realisation and the operation

phase (see Figure 9). This thesis focuses on the planning and development phases,

excluding the processes of maintenance and disposal. The processes are based on

traditional system development approaches such as the V-model (see chapter 5.5.1).

The technical concept provides a rough system design, based on the available

information supplied by the customer or the project owner. It depicts the technical

realisation, which is a mixture of the customers’ needs and their technical solutions.

[TSS12]

The requirements engineering phase is the basis for the project. It defines what

stakeholders expect from the system in order to meet their needs [HJD10]. This includes

first of all the functional requirements, which define what set of functions the system

should offer. In addition to that, the non-functional requirements also have to be defined

which describe how the system should achieve these predefined functions. These non-

functional requirements could be, for example, requirements regarding availability,

performance or even constraints. One of the most important non-functional requirements

class is the class of the safety requirements, which will be gathered during execution of

the FHE (see chapter 4.3.2) [TKH12]. Especially during the development of safety-critical

systems or applications they should be treated in a very particular way: apart from being

identified and defined they should furthermore be traced throughout the whole lifecycle

[HJD10].

These defined requirements are then inputs for the system design. The aim of this

process is to define a technical solution which meets all requirements including the

important safety requirements.

Before starting the realisation process, further tasks must be carried out in advance,

especially when a complex system which needs further detailed analysis is identified. In

such a situation there is a need for requirements engineering and design on a component

level [SW01]. These tasks can also be seen as parts of the realisation process, but in the

case of a software system there are designated processes called “software requirements

engineering” and “software design” [TKH12]. They basically include the same tasks as

the system level, but within the scope of software.

The final process within the solution space is the realisation, which consists of several

sub-processes such as the optional component design and the real implementation,

4 Integrated Process Model

29

followed by integration and final tests [TKH12]. Component design is, as previously

mentioned, the process of further dividing the system into parts in order to manage very

large and complex systems more easily. Implementation is the conversion of the planned

ideas into a working system – in the case of software, this is the coding itself. During

integration, the divided parts of a system (e.g. hardware and software) are put together in

order to assemble the functionally working system. The test sub-processes are the

verification of the predefined requirements in order to ensure that the system is working

correctly according to the specifications.

Within the whole engineering lifecycle, traceability is of utmost significance. Therefore all

requirements have to be traced to documented design decisions and the corresponding

verification and validation activities. When performing detailed analysis on the software

level, the tracing from system level to software level is of the utmost importance.

4.3 Safety Lifecycle

The safety lifecycle ensures compliance with the required safety standards such as IEC

61508, ISO 26262 or EUROACE ED-153 by including their required activities into the

processes of the lifecycle.

As Figure 9 shows, the safety lifecycle consists of five main and two optional processes.

The lifecycle starts with the preliminary hazard identification (PHI) followed by the

functional hazard evaluation (FHE) and the preliminary system safety evaluation (PSSE).

When some system complexity is met that needs more detailed analysis on the

component level, the two optional processes have to be performed. In the case of

software, these additional software safety lifecycle processes are the software safety

requirements analysis (SSRA) and the software safety design analysis (SSDA). These

processes are similar to the FHE and the PSSE, but within the scope of software only.

The system safety evaluation (SSE) is the subsequent process within the lifecycle, and is

performed until the development of the system has finished. After the system has gone

into operation, the operational system safety evaluation (OSSE) is initiated. Due to the

focus of this thesis, this last process is considered as out of scope. [TKH12, TSS12]

Each of the main safety processes answers a different question regarding safety, as

shown in Figure 10:

PHI FHE PSSE SSE

What are the high-
level hazards?

How safe does the
system need to be?

Is tolerable risk achievable
with the proposed system

design?

Does the system as
implemented achieve

tolerable risk?

SSRA SSDA

How safe does the
software need to be?

Is tolerable
risk achievable

with the proposed
software architecture?

Figure 10: Questions of the Different Safety Processes [based on TS10, TSS12]

4 Integrated Process Model

30

The following sections will describe the six processes depicted in Figure 10, which are

applicable during the development of the system.

4.3.1 Preliminary Hazard Identification (PHI)

Based on a rough technical concept of the system, designed and developed in the

engineering lifecycle, the PHI is started on the top level at a very early stage. This helps

in taking appropriate actions such as redesigning the system to reduce or remove

hazards or even challenging the whole system concept. The goal of the process is to

identify all theoretically potential hazards by knowing the rough concept and main

business use cases. This identification could be achieved using widely known methods

for idea generation such as brainstorming, reviewing former projects or using checklists.

The list of identified hazards should consist of their causes, their possible consequences

(see Figure 3), a first risk assessment and presumable risk mitigation strategies. By

having the full list of preliminary identified hazards it should be feasible to allocate a SIL

to the system. This is done in order to estimate how further detailed safety activities

should be executed. [Sto96, TKH12, TSS12]

4.3.2 Functional Hazard Evaluation (FHE)

The aim of this process is to identify all of the system functions which could lead to one or

more hazards. Based on the output of the PHI in the form of a preliminary hazard list, and

by including the requirements of the system, it is possible to make a statement about how

safe the system must be. Possible methods supporting the achievement of this goal are a

PHA (see chapter 2.4.1) or a HAZOP (see chapter 2.4.3). [TSS12]

The main outputs of the process are the definitive SIL, an extended list of hazards (which

was started in the previous PHI process) and, based on that list, the derived safety

requirements for the system. These safety requirements are necessary in order to

achieve the safety goals and prevent the identified hazards from occurring or at least to

mitigate their risks to an acceptable level. Due to the fact that system requirements

depend on safety requirements and vice versa, the system requirements have to be

updated when safety requirements are defined. [TKH12, TSS12]

4.3.3 Preliminary System Safety Evaluation (PSSE)

In the PSSE process, the system design is analysed in terms of whether the safety

requirements and an acceptable level of risk are met. The process consists of several

analyses on the subsystem, component and software levels for the purpose of analysing

the interdependencies between them. This is done with the help of methods such as

FMEA (see chapter 2.4.2) and/or FTA (see chapter 2.4.4). [TS10, TSS12]

A further part of the investigation is the evaluation of the system design itself and the

question of whether additional hazards are raised by that design. This will probably result

in new, derived safety requirements, which might necessitate an update of the safety

requirements and the system design itself. If so, the PSSE has to be repeated until the

4 Integrated Process Model

31

system design meets all safety requirements and does not raise any new hazards. In

addition to the definitive set of safety requirements, a preliminary safety case is created.

[TKH12, TSS12]

4.3.4 Software Safety Requirements Analysis (SSRA)

The SSRA inspects all software and interface requirements to detect faults and defects,

which could lead to software hazards. As well as the software parts, all hardware parts

which could trigger software malfunction are also taken into account. Additionally, all

software-related safety requirements are verified in terms of their correctness and

completeness. To identify all relevant safety-critical functions at an early stage, a Safety

Critical Function List (SCFL) is created on the basis of predefined objective criteria.

[TSS12]

The main aim is to identify software safety requirements in order to meet the required SIL.

In addition, all the safety-critical functions of the software have to be documented.

4.3.5 Software Safety Design Analysis (SSDA)

The SSDA is, like the PSSE but on the software level, the verification of whether the

software safety requirements are adequately covered in the software design. Additionally,

the analysis should detect whether the software design introduces new hazards.

Common methods for supporting this process are FMEA and FTA, which are especially

tailored to software and therefore performed on a qualitative level. [TSS12]

4.3.6 System Safety Evaluation (SSE)

The SSE is the last safety process within the development of the system and is done in

parallel with the detailed design and implementation. This process should ensure that

previously defined safety requirements and the design aspects have been correctly

implemented in such a way that the remaining system risks are below an acceptable

level. In order to prove this correctness of implementation, verification methods and tests

are used. The safety case which was started in the previously process has to be

continued using all available information. [TSS12]

The SSE is performed periodically during the whole system lifecycle, whereas the

process is often called the “operational system safety evaluation” (OSSE) after the initial

development has finished [TSS12]. This process is closely connected to the safety case

document, which should be kept up to date until the disposal of the system, especially

when changes are made to the system [TSS12].

4.4 Support Processes

ISaPro® recommends having at least three support processes including configuration

management, quality assurance and verification and validation. In specific cases, change

4 Integrated Process Model

32

management is considered as a separate process, but it can also be part of the

configuration management [CMMI10]. These processes support all three lifecycles by

ensuring the integrity and quality of work.

The exact purpose of configuration management is to achieve and ensure the integrity of

work through several tasks. The first task is to identify the work products which should be

put under configuration management. During the lifecycle of the project, changes to those

items have to be controlled, documented and reviewed. Work products can be any output

within the whole project lifecycle, e.g. plans, specifications, requirements, documented

design, code, etc. In the majority of the cases, at given points in time, e.g. after a review,

a work product is marked as a valid baseline (release). This indicates that this version of

the work product is a stable basis for continuing evolution of the configuration item.

[CMMI10]

Quality assurance consists of two main tasks: the monitoring of the processes and the

evaluation of their effectiveness. This can be achieved by reviewing all defined work

products and processes on a regular basis. It has to be defined which of the processes

and work products should be reviewed and also how and when the review should take

place. Of particular importance in the definition of work products and processes are the

safety-critical ones. All tasks belonging to quality assurance have to be performed either

by an independent department or at least an independent person. [TSS12]

The last support process is the verification and validation. Verification ensures that the

system meets its requirements. This is done with the help of reviews, inspections, static

code analysis and tests. Validation ensures that the system fulfils its intended use as

expected by the stakeholders and regulations. This also includes the proof that all

specifications required by the safety standards are fulfilled. [TSS12]

5 Agile Software Development Methods

33

5 Agile Software Development Methods

In the late 1990s, new approaches to software development started to emerge as

alternatives to the traditional development methods (described in chapter 5.5.1) which

were widely used at that time. The first representatives of these so-called agile

methodologies introduced completely new ways of approaching software development.

“Agility means that you are faster than your competition. Agile time frames are

measured in weeks and months, not years.”

Michael H. Hugos [Hug09]

Although different approaches were introduced by different people, they were all based

on similar beliefs and ideas. The central topic was the creation of a new, more efficient

way of developing software in terms of a lightweight and more flexible process. At the

same time, this process should ensure high quality software products. The term >agile<

was adopted as a kind of umbrella term for all those new approaches which fitted in with

the common values and principles, which are introduced in chapter 5.1. The best-known

approaches which put these values and principles into practice are described in chapter

5.3.

Nowadays, agile methods are widely accepted as a development approach for software

[VerOne13]. A German study has pointed out that the majority of companies use either

traditional or agile approaches, or even hybrid forms depending on the kind of project that

has to be accomplished [Kom12]. This course of action makes the most of the

advantages of all the various traditional and agile approaches. There are also empirical

data and case studies available on their benefits compared to traditional methods. The

most applicable ones are presented in chapter 5.4.

5.1 Values and Principles

In February 2001, seventeen independent representatives of various software

development and programming methodologies committed themselves to four core values,

called the “Agile Manifesto” [AgiAll12]. These values are supplemented by twelve

principles which further explicate what it means to be agile. Both the values and principles

formed the basic framework for the birth of the Agile Alliance and are still valid nowadays.

This Agile Alliance was founded at that meeting. It is a non-profit organisation which has

committed itself to advancing agile development principles and practices. [AgiAll12]

5.1.1 Values

Manifesto for Agile Software Development:

“We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

5 Agile Software Development Methods

34

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.”

 Ward Cunningham [Cun01]

The introductory paragraph of the quote makes it clear that this group of people were

experienced software development practitioners who thought that they had discovered

some new and probably better ways of developing software. This first paragraph is

followed by the four main principles which prioritise values. The concluding paragraph is

intended to indicate that the values on the right cannot be ignored completely. Rather, it

points out, there has been a shift of priorities in favour of the left-hand values.

Individuals and interactions over processes and tools

The first main value is that individuals and interactions are valued more than processes

and tools. This should indicate that these new kinds of methodologies focus on people

and not explicitly on their roles as stated in the organisation chart. Team members should

use processes and tools as aids to leverage the effects of agile development. Another

important fact is that people are not as easily exchangeable as other resources such as

infrastructure and similar elements. The direct and verbal interactions between well-

educated and trained team members are necessary for new and sophisticated solutions

where all dependencies are considered. [Coc06, WB10]

Working software over comprehensive documentation

The second value points out that a working system is ruthlessly honest and therefore

shows exactly, what has been achieved so far. Working software can even be deployed

and operated by the customer, while documentation is primarily an aid for the team

members to specify the unreliable future as well as possible [Coc06]. It does not tell the

user anything about the progress of development and therefore only as much

documentation as is actually necessary should be created.

Customer collaboration over contract negotiation

This third core value should usher in a new era in which the customer has an amicable

relationship with the contractor beyond organisational boundaries. This is indicated by the

customer having a voice in joint decision-making and an involvement in development

planning and the approval of the recently delivered work. Contracts are of course useful,

but experience shows that in most cases the system specified in the contract does not

exactly correspond to the system the customer and particularly the end-user needs

[WB10].

5 Agile Software Development Methods

35

Responding to change over following a plan

The final value addresses the need to respond to changes as fast as possible. Creating

and referring to a plan is reasonable; e.g. each agile method has a development planning

phase, but the plan has to contain mechanisms for dealing with changing priorities

[Coc06]. It simply does not make sense to follow a plan when it is clear that it cannot be

met anymore.

5.1.2 Principles

In addition to the core values of the agile manifesto (see chapter 5.1.1), the practitioners

of agile software development committed themselves to twelve principles, which indicate

what it is to be agile.

This master’s thesis will not list all of them in complete detail; rather it will concentrate on

the basic statements based on the principles of the Agile Alliance [AgiAll12]. The all-

embracing statement of principles can be found on the website of the agile manifesto

[Cun01].

One principle is to satisfy the customer by means of an early and frequent delivery of

valuable software. In order to achieve this statement, two more principles have to be

considered. One is about working software itself as the main measure of progress and

the second one is about the frequent delivery of that working software. Basically, the

combination of all three principles should enable early feedback from the customer or

end-users in order to adjust development based on those inputs to achieve the main aim

of customer satisfaction.

This leads directly to another principle, whereby the agile process welcomes changing

requirements, even late in development. Without this principle, customer feedback cannot

be integrated into the software. There have to be mechanisms available for dealing with

changing priorities.

These principles are followed by others which deal with individuals. The first is that

business people and developers should work together on a daily basis within the scope of

the project. This is emphasised by the statement on the most efficient and effective

method of conveying information to and within the project team: the face-to-face

conversation. Another principle of dealing with people is that the project should be built on

motivated individuals. This can be achieved by providing them with the necessary

environment and support, and the trust that they will get the job done.

In addition, there are some statements about the development techniques themselves.

One is that the best architectures, requirements and designs emerge from self-organised

teams. This indicates on the one hand the responsibility of the team and on the other

hand the fact that architecture, requirements and design are not made prior to

implementation, but rather they emerge during this process. Another principle is that

continuous attention should be paid to technical excellence, because only good design

5 Agile Software Development Methods

36

enhances the agile approach. In order to accomplish this excellence, some common

technical practices have become accepted in various agile approaches (see chapter 5.2).

Then there is a principle regarding the promotion of a sustainable development so that

sponsors, developers and users are able to maintain a constant pace. This statement

deals with the term project efficiency. It indicates that long hours of work by the team

should be avoided because it will make them tired, which in fact will lead to more errors in

their work and thus a reduced pace in the following period [Coc06].

Another principle deals with the term simplicity. This is defined as the art of maximising

the amount of work not done [Cun01]. This has to be achieved within the boundary

condition of delivering valuable and qualitative software. The challenging fact is that

making things simple is quite difficult, as Pascal noticed in the 17th century:

“I have made this letter longer than usual, only because I have not had time to

make it shorter.”

Blaise Pascal [translated from French]

The concluding principle is about the importance of reflecting on how to become more

effective at regular intervals. This should ensure that behaviour is adjusted accordingly

via of the reflection work of the team. It is the basic requirement for a continuous

improvement process which evolved from the Japanese term “Kaizen” and is nowadays

part of almost every quality management system [Ima86].

5.2 Technical Practices

Some technical practices have become accepted across various approaches (see

chapter 5.3) because of their support for a lean and agile process. This chapter provides

an overview of how to be agile on the operative basis of the process.

5.2.1 User Stories

In the agile process, requirements are necessary to estimate the effort required in order

to give the stakeholders the opportunity to prioritise depending on those estimated

values. Furthermore, requirements should ensure clarity between the customer and the

developers. In order to do so, the requirements are written as user stories. [WB10]

In most cases, user stories follow structured templates, like these [Coh09]:

“As a <type of user>, I want <some goal> so that <some reason>.”

“In order to <achieve value>, as <type of user>, I want <some goal>.”

These user stories should be written initially by the user itself or at least by “user proxies”

who represent the customer or the end-user in the project [Coh04]. Such persons can be

5 Agile Software Development Methods

37

end-users, managers, salespersons, domain experts or business analysts. Afterwards,

the user stories are improved in a discussion process including the customer and the

contractor by adding necessary details and remarks [WB10].

5.2.2 Test-driven Development

Another technical practice is test-driven development (TDD). In traditional software

development approaches, each part of the software is usually designed first, then coded

and finally tested during the verification phase. When defects are detected in this phase,

the code is corrected in order to repair the defects that occurred. Then these changes are

verified again.

The process of test-driven development turns this way of thinking around and starts with

the implementation of a test in order only to write the code, which is necessary to achieve

the clear goal of passing the test. Design is carried out in the final stage, during which the

code is restructured in such a way that the simplest design is the result. This last step is

also called refactoring and is explained in chapter 5.2.3. [Kos07]

This previously described cycle, which is depicted in Figure 11, is repeated for every test

that has to be implemented.

Figure 11: Test-driven Development Cycle [Coh09]

This process automatically results in comprehensive code coverage through automated

tests, which further helps to avoid defects in the code when adding new functionality

[Kos07].

5.2.3 Refactoring

As stated in chapter 5.2.2, refactoring is the last stage within the test-driven development

cycle. Refactoring is the process of changing a software system without altering the

external behaviour of this part of the code in order to improve its internal structure. It is a

way to minimise the risk of new defects occurring in the future by cleaning up the code.

This process of cleaning up the code ultimately results in the final design of the software

component [FBB+99]. A basic prerequisite for refactoring is high code coverage provided

5 Agile Software Development Methods

38

by unit tests in order to be sure that the software system is running as expected after the

redesign [Kos07].

According to Martin, refactoring also helps to prevent “code rot”, which is a term for a

typical syndrome within software where the code is allowed to decay until the decision is

made that it has to be completely rewritten [Mar08].

5.2.4 Evolutionary Design

This technical practice is more of an approach and is basically the result of using test-

driven development (see chapter 5.2.2) and refactoring (see chapter 5.2.3). The idea is to

evolve the design as new requirements arise. Therefore software coding is initiated with a

simple design, e.g. by using TDD. Afterwards this design is changed only when

requirements force this step. Necessary changes are then achieved by refactoring and

automated tests. [Els07]

5.2.5 Continuous Integration

Continuous integration is an extension of the use of nightly builds [Coh09]. The basic idea

is that the written code is checked into the source code repository a few times a day in

order to ensure that software integration is continuously tested by automated integration

builds. It is important that all procedures after the check in, e.g. building software, running

automated tests and sending notifications, are executed automatically. [DMG07]

5.2.6 Pair Programming

Pair programming (PP) is the term for a practice whereby two developers sit next to each

other at one machine. It is a dialogue between two people simultaneously implementing

the requirements including analysis, design, coding and testing [BA04]. This method

should not be used all day long; it should rather be used for complex and risky parts of

the software project [Coh09]. A further recommendation is to switch partners frequently in

order to transfer knowledge throughout the team. Studies have shown that pair

programming slightly increases costs, but demonstrably contributes towards enhancing

quality [DAS+07].

5.2.7 Collective Code Ownership

The basic principle of collective code ownership is shared code. It basically states that the

entire team owns the whole source code and therefore is responsible for it. Everyone can

change code in any part of the system at any time. Automated tests ensure that the

correct operation of the code is not affected by a developer changing the code who is

unfamiliar with the software module. This mutual trust ensures that a developer is able to

do all the tasks which are necessary to accomplish the user story. [BA04, Els07]

5 Agile Software Development Methods

39

5.3 Approaches

Various approaches have emerged in connection with those values, principles and

technical practices during the last 15 years. Extreme Programming (XP) was probably

one of the first approaches in agile software development, whereas today the most

widespread approach is definitely Scrum [BN07, VerOne13]. This is particularly based on

the fact that Scrum is very management-oriented. Therefore a lot of companies use

variants of or approaches based on Scrum [BN07] or even include other practices like XP

in the Scrum process. These two approaches are briefly described in the following two

sections.

Other relevant approaches [VerOne13] that will not be introduced in this chapter are

feature driven development (FDD) [CLD99, Ric12] and the software variant of Kanban

[And10], a process which originated in automotive production [GM03].

5.3.1 Extreme Programming (XP)

Extreme Programming consists of a collection of the most successful practices and was

first introduced by Kent Beck in 1999 [BA04]. In addition to the practices, this approach

also describes their interdependencies based on the agile values [WB10].

The approach is based on values and principles which are basically in line with those of

the agile manifesto (see chapter 5.1). These values should be implemented by primary

and corollary practices. Due to the fact that the approach needs to be described briefly

here, only the primary practices are listed. For further details refer to [BA04]:

 Sit Together

 Whole Team

 Informative Workspace

 Energized Work

 Pair Programming

 Stories

 Weekly Cycle

 Quarterly Cycle

 Slack

 Ten-Minute Build

 Continuous Integration

 Test-First Programming

 Incremental Design

Kent Beck [BA04]

5.3.2 Scrum

In contrast to Extreme Programming (see chapter 5.3.1), Scrum is a generic

organisational management approach. The process description gives no specifications or

guidelines on how to design, code and implement software, and basically Scrum can be

used for non-software projects as well [Coh09]. Because of its freedom in terms of

technical practices, Scrum is often combined with other agile methods such as Extreme

Programming or Kanban. This latter combination is also called “Scrumban” [Lad09].

5 Agile Software Development Methods

40

Scrum arranges all its practices around an iterative, incremental process skeleton as can

be seen in Figure 12. In the first step, the role of the product owner creates a prioritised

list of user stories which is called the “product backlog” [Sch04]. During sprint planning,

the planning for the next iteration, the team pulls a subset of these stories – which they

think that they will be able to accomplish within the next iteration – from the top of the

product backlog. This subset is called the “sprint backlog” [Sch04]. During this sprint,

which is usually a fixed time box of one to four weeks, a daily scrum meeting is held in

order to check the status of the team. Along the way the role of the so-called Scrum

master, who is a kind of method coach, keeps the team on track. At the end of the

iteration the product should be potentially shippable. The process is formally closed by a

sprint review where the accomplished user stories are demonstrated and a team

retrospective takes place. After the iteration is finished, the next one starts with sprint

planning and so on. [Sch04, ScrAll12]

Figure 12: Scrum Framework [Lac12b]

5.4 Scientific Research

A large amount of scientific research about agile methodologies has been published over

the past few years. This chapter will briefly introduce the most significant studies.

One study was carried out by Michael Mah in 2008 [Mah08], in which he made an

exhaustive comparison of more than 20 agile projects on more than 7,500 traditionally

completed projects, using a contemporary worldwide database. It points out that these

agile projects are 16 % more productive and have a 37 % faster time to market at a

statistically significant level of confidence. [Mah08]

The second study was published by David Rico, also in 2008 [Ric08]. He carried out a

survey based on 69 published academic and research papers to evaluate whether agile

methods impact the return on investment (ROI) of a project. The results showed that agile

5 Agile Software Development Methods

41

methods are almost as good as the best traditional models, which according to this study

are the Personal Software Process (PSP) and the Team Software Process (TSP). In

comparison with heavier traditional methods like the Capability Maturity Model®

Integration (CMMI) or ISO 9001, agile methods had a higher average ROI. [Ric08]

While these first two studies focused on whether and how projects were mastered better

with the adoption of agile methods, a study by Kruchten [Kru04, Kru10] tried to identify

the optimal conditions for succeeding with agile methods. Kruchten describes this ideal

context as the “agile sweet spot” [Kru04, Kru10]. Based on his experience as a consultant

to companies adopting agile methods, he defined this sweet spot by the following criteria

[Kru04, Kru10]:

 Co-located small teams of ten to fifteen people to facilitate face-to-face

communication

 Customer availability to get fast feedback and decisions in order to increase their

satisfaction

 New development or so-called “green field” projects in order to avoid maintaining

legacy source code [Kru10]

 Interactive types of applications like business applications (in contrast to

embedded real-time systems)

 Low to medium criticality in terms of worst case is losing money (and not to harm

humans or property)

 Short lifecycles of weeks to months and not years

This report does not indicate that projects outside the sweet spot would not work, but it

might be that those projects face challenges that have to be overcome. Possible solutions

could be the adaption or tailoring of agile processes, but in some cases the result will be

that agile methods are just not suitable for that particular project. [Kru10]

5.5 Interdependencies with Traditional Approaches

This section is intended to give a brief overview of traditional software development

lifecycles and their interdependencies with agile approaches. While chapter 5.5.1

introduces the two most familiar approaches within traditional software development,

chapter 5.5.2 identifies approaches targeting the combination of agile and traditional

procedure models.

5.5.1 Introduction to Traditional Approaches

Due to the focus of this thesis on safety-related software development, the selected

approaches are the waterfall model and the V-model. While agile methods use an

iterative approach, these two models use a sequential and plan-driven approach,

respectively, to developing software. This difference makes it difficult to compare them.

As already highlighted in chapter 5.4 there is no simple answer in finding the best

procedure model or approach. All of them have their advantages and therefore each

5 Agile Software Development Methods

42

potential software system has to be evaluated before starting development in order to

determine the most suitable approach.

The waterfall model, invented by Royce [Roy70] in 1970, was the very first approach

within software development. Royce’s model is based on a sequential approach where

the completion of one development activity allows its successor activity to begin [Roy70].

Figure 13 depicts the core lifecycle of the model with interactions between consecutive

development activities or phases.

Figure 13: Waterfall Model [Roy70]

The major advantage of this model is the straightforward and very structured approach,

which is very efficient when requirements remain relatively stable over the project time

[Boe02]. If there are changing requirements this model becomes inefficient in terms of

total costs. While the costs of change increase in quite a linear way when using agile

methods in combination with test-driven development and refactoring (see chapters 5.2.2

and 5.2.3), the costs increase exponentially over the course of the development lifecycle

when using the waterfall model [Els07, WB10]. Figure 14 depicts this diverging

development of cost per change.

Figure 14: Cost of Change over Time using the Waterfall or Agile Procedure Models [Els07]

5 Agile Software Development Methods

43

The V-model was introduced by Boehm [Boe79] in 1979, just a few years after the

waterfall model. The author focuses on the aspects of verification and validation and their

context in the software lifecycle. Boehm points out that the initial definition of

requirements and design in various levels of detail is linked to verification and validation

activities after implementation. Therefore verification and validation activities can be put

on the right side of the model in line with the definition on the left side as depicted in

Figure 15. [Boe79]

Figure 15: V-Model [Boe79]

Such sequential approaches are also required when dealing with project governance

[Coh09], which is used for high-level control of projects in the project portfolio of an

organisation. This project overview is often achieved by stage-gate processes, where the

software development has to pass various gates along the project lifecycle [Coo08] as

depicted in Figure 16. It helps top management to monitor projects effectively, e.g. for

forecasting whether a project will exceed its budget or similar issues.

Figure 16: Stage-Gate
®
 Approach [Coo08]

5 Agile Software Development Methods

44

5.5.2 Combination of Agile and Traditional Methods

This section gives a brief overview of how agile approaches are combined with traditional

ones in order to meet particular requirements. These adapted procedure models are

mainly required by development projects that conflict with agile methodologies. Therefore

the development approach has to be adjusted in order to fit the context of the project.

When it comes to safety-critical software systems, agile methodologies have to be

adapted in order to suit the objectives defined by standard specifications.

The most familiar adaptation of agile procedure models is mixing them with sequential

development methods. According to Sliger [Sli06] there are three different scenarios:

 Waterfall-up-front

 Waterfall-at-end

 Waterfall-in-tandem

Regarding the first scenario (waterfall-up-front), there are dozens of reasons why some

documents such as a project plan or specifications are needed before starting a project or

software development. Some documents might be required by internal parties, e.g. by the

management for releasing the budget, or by external parties, e.g. by an authority for

confirming compliance to a standard. Regardless of the kind of reasons for which this is

necessary, Cockburn [Coc00] recommends generating documentation that is “barely

sufficient” in order to meet agile values and principles (see chapter 5.1). These upfront

tasks can be achieved either ahead of the first iteration or within it as the first backlog

item [Sli06]. Besides the fact that this preliminary work provides necessary information for

the main stakeholders, it helps the agile team to develop a product vision by compiling

the specification [Sli06].

The second scenario (waterfall-at-end) is designed for software projects that need a

designated preparation phase in order to achieve tasks that cannot be managed within an

iteration. Such a task could be a separate verification and validation by dedicated and

independent teams of quality assurance people or even external groups [Coh09]. Another

possibility could be an approval process required by an authority or a standard

specification [Sli06].

The third scenario (waterfall-in-tandem) is the most complex one, dealing with software

development projects that are comprised of more than a single team, using different

development approaches [Coh09]. This approach needs a lot of communication and

coordination among all teams so that they can pull together. Most likely the largest

barriers are the different value sets of the teams, which could regularly result in conflicts

[Coh09].

Regardless of which of those three previously mentioned scenarios is used, to be truly

agile West [Wes12] recommends pushing the agile approach (light blue activities) as far

to the edge as possible, as depicted in Figure 17.

5 Agile Software Development Methods

45

Figure 17: Combination of Waterfall-up-front and Waterfall-at-end [Wes12]

6 ED-153 Objective Mapping

46

6 ED-153 Objective Mapping

This chapter describes all necessary activities within the development of safety assured

software based on the objectives raised by EUROCAE ED-153 [EUROCAE09]. In order

to make sure that the objectives of the ED-153 are fulfilled, a mapping of these objectives

to the relevant processes of the ISaPro® (see chapter 4) framework is necessary. For this

mapping process only the software safety assurance system (see chapter 3.3) and the

applicable lifecycle processes (see chapter 3.4) of ED-153 are considered as in scope.

The aim of this mapping process is a defined way of working including all necessary

activities that have to be conducted in order to be compliant with ED-153.

6.1 Objective Mapping Method

Figure 18 depicts a model of this mapping process. This method should ensure that the

overview of the way of working does not get lost due to the multiplicity of various

objectives. In addition the result provides a process framework including activities

ensuring compliance with EUROCAE ED-153.

EUROCAE ED-153 Guidance

Softw
are S

afety

Assurance S
ystem

Primary Lifecycle

Processes
Organisational

Lifecycle
Processes

Supporting

Lifecycle

Processes

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N°

Obj N° Obj N°

Obj N°
Obj N°

Obj N°

Obj N°

Objective Mapping

Process

ISaPro® Process Framework

Figure 18: Objective Mapping Process

6 ED-153 Objective Mapping

47

The realisation of this mapping process is carried out by the following activities:

 First, each activity (or also sub-objective) of the ED-153 objectives is mapped to a

process of the ISaPro® process model based on activity comparison. A detailed

analysis on which sub-objective is matched to which process is available in Annex

A.

 In the case that no activity of the ISaPro® model specifically indicates the activity of

the objective, an existing activity will be expanded or a new activity will be created

(see comment columns in Table 10, Table 11, Table 12 and Table 13 in Annex A).

 Creation of compacted tables for each category of lifecycle processes (safety

assurance, primary, supporting and organisational processes) (see summary

chapters in Annex A).

 Creation of a comprehensive list of activities per process of the ISaPro® framework

which are necessary to achieve the whole number of objectives (see Annex B).

6.2 Integrated Process Lifecycle Overview

This section intends to give an overview of the mapping analysis results of Annex A in

order to have the full set of requirements for an integrated process lifecycle. Table 7

depicts the results in tabular form, where the ISaPro® processes are on the left and the

ED-153 objectives on the top. Each green-coloured box represents one mapping of an

objective to a process of the ISaPro® process model.

6 ED-153 Objective Mapping

48

Table 7: Overview of Mappings within Integrated Process Lifecycle ISaPro
®

7 Safety Versus Agile Principles

49

7 Safety Versus Agile Principles

This chapter deals with the comparison of the principles of safety and agility. These

principles may either result in synergies (see chapter 7.2) or in conflict with each other

(see chapter 7.3). Before these interdependencies can be determined, the basic

principles must be identified (see chapter 7.1). The outputs of this analysis highly

influence the proposed agile procedure model (see chapter 8).

7.1 Evaluation

The basic agile values and principles are relatively easy to determine due to the common

agreement on various approaches in the agile manifesto (see chapter 5.1). Depending on

which approach is chosen, the primary focus is set to a different subset of these values.

For the comparison in Table 8 some of the very central values were chosen.

In the area of safety there is no such agreed common point of view on values or

principles available. There are many different guidelines and standard specifications that

deal with safety issues (see chapter 2.3). Each of them concentrates on slightly different

topics due to their application in different domains or industries. The following standard

specifications have been evaluated for extracting basic safety values and principles,

which can then be compared with the agile ones:

 IEC 61508 [IEC10]

 DoD MIL-STD-882E [DoD12]

 EUROCAE ED-153 [EUROCAE09]

One principle which is covered by many safety standards is that of process orientation.

This is especially the case in ED-153, where all objectives are mapped to processes of a

generic business process framework. In IEC 61508 the safety lifecycle is depicted as a

chain of processes and for the purpose of software, the V-model (see chapter 5.5.1) is

mentioned. This process orientation should ensure a systematic and sequential

approach, which is needed for accomplishing the engineering and safety lifecycle in

parallel and stage by stage (as in the integrated process model ISaPro®; see chapter 4).

This process-driven approach has the advantage that the safety analysis can be

executed based on the entire definition of requirements and design before starting the

implementation. It is necessary to identify all possible hazards and include mitigation

strategies in terms of safety requirements into the definition process. This so-called

>upfront definition< is the second value, which can be assigned to the term of safety.

Another principle which should be fulfilled by using a systematic process and plan-driven

approach is that of evidences. They are of paramount importance to demonstrate to an

external authority that the system or software is safe. This is usually done in the form of a

safety case (see chapter 2.5).

7 Safety Versus Agile Principles

50

In the context of the last two principles, upfront definition and evidences, there are two

other central principles. The first one is documentation, which mainly should ensure the

other principle of traceability. Both are highly supportive of the principle of evidences.

Altogether these previously defined principles contribute to the core principle: the

prevention of accidents that could harm humans or property. Basically it is all about this

single, but very important principle.

Table 8 provides an overview of the principles of safety and agility evaluated in this

chapter. While this is only a rough picture of the two approaches, chapter 7.2 and 7.3 will

identify the synergies and conflicts between them.

Safety Agility

Process Orientation Individuals and Interactions

Upfront Definition Evolving Design

Evidences Simplicity

Documentation Frequent Delivery

Traceability Working Software

Prevention of Accidents Responding to Change

Table 8: Safety versus Agile Principles

After defining and confronting these principles, one basic statement regarding initial

specification can be extracted. Whereas agility recommends doing >as much as

necessary<, safety endorses doing >as much as possible<. Figure 19 depicts these very

different positions in the initial specification phase.

Figure 19: Different Positions on Initial Specification

7.2 Synergies

Although agility and safety seem to be very contrary in some of their attitudes, this section

describes some of the potential sources of synergies between the two approaches. In

Agility
Safety

Initial Specification

7 Safety Versus Agile Principles

51

doing so, this section distinguishes between social factors, process factors and technical

practices.

7.2.1 Social Factors

A first social source of synergy is the definition of a team in agile projects. An agile project

team should ideally be very interdisciplinary in order to be a cross-functional team

[Coh09]. This should avoid frequent handovers of working packages between the

different departments involved [Coh09]. Two of the departments which can benefit from

this principle are the quality management and safety departments. They can dispatch one

of their own experts into the agile project team in order to improve the communication

between development and quality/safety experts. For example, these experts can then

join the planning meeting for the next iteration to contribute to discussions regarding

which topics require further analysis. This kind of collaboration is a lot more interactive

than just carrying out quality and safety tasks based on defined requirements.

7.2.2 Process Factors

Within agile approaches it is common to define the term >done<. This so-called

“Definition of Done” (DoD) specifies the criteria that must be met in order for an iteration

or for a feature/story to be accomplished entirely [Lac12a]. Basically it is a kind of

checklist, showing what tasks have to be done to add verifiable value to the potentially

shippable software product [Coh09]. For a feature this can be defining test cases, writing

code, updating design documents, performing unit tests and many more tasks. Those

checklists on various levels should therefore ensure that no necessary tasks are missing

after completion. This is in line with the requirements on completeness and integrity in

safety-critical environments mandated by standard specifications (e.g. refer to ED-153

objectives 4.3.4 and 5.4.3 in Annex A).

Another enabling process factor is the approach of clarifying technological questions,

preferably at short notice. This is ensured with the definition of stories for technological

studies that could be done within the first iterations in order to get the results and

feedback already at the beginning of the project [WB10]. This should minimise the risks of

adopting new technologies without having a detailed initial design phase. The advantage

of this kind of rapid prototyping is that new technologies are not evaluated and analysed

only within theory but rather by setting up a prototype, which should remediate the lack of

clarity. This is also in line with the agile principle of “fail fast” [Sho04], which facilitates

failing at an early development stage. Such principles can and should be applied to

functional and design-related issues as well.

Continuous improvement is a central topic in many agile approaches. It is achieved by

using feedback loops on various levels. In Scrum (see chapter 5.3.2) this is done by

reflecting each sprint in a meeting at the end of this particular increment. In addition, the

frequent delivery of software helps to get fast feedback, which is also an input for

improvement. These ideas of continuous improvement are in line with common quality

7 Safety Versus Agile Principles

52

management systems (e.g. ISO 9001 with its Plan-Do-Check-Act Cycle by Deming

[Dem82]), which are required by safety standard specifications as well.

A further central statement of agile approaches is the fact that decisions are made at the

latest possible point in time. This is done because of the assumption that late decisions

are based on a maximum of information [WB10]. It contributes to a maintainable system

due to the fact that simple software solutions are the output of such an approach. There is

no need for complex solutions based solely on uncertainty in order to cover a lot of

alternatives. Safety-critical systems can profit from easier solutions as well, because the

more complexity is added to a software project, the more fault-prone the system is

[CB11]. On the other hand late decisions are in contrast to the upfront definition, which is

demanded by many safety standard specifications. Therefore this principle is also a

potential source of conflict (see chapter 7.3.2).

7.2.3 Technical Practices

One of the technical practices, that of collective code ownership (see chapter 5.2.7),

assumes that the source code is consistently structured and well documented. Otherwise

it would be impossible to manage the source code of software modules on which the

whole team is working. These quality requirements for the code are achieved by working

in compliance with agreed coding styles and guidelines. Code reviews and inspections

support this compliance by verifying the application of the rules. In addition they ensure

the simplicity and maintainability of the software. Such guidelines, reviews and

inspections are usually explicitly required by safety standards (e.g. refer to ED-153

objectives 4.3.10 and 5.6.3 in Annex A) as well and therefore in line with the principles of

safety.

Probably the largest potential for synergy is in the technical practice of test-driven

development (see chapter 5.2.2) including the use of refactoring (see chapter 5.2.3).

Refactoring contributes to meeting the requirement for simple and maintainable code. In

addition it addresses the sceptical point of view regarding the re-use of software caused

by serious accidents in the past (e.g. Therac-25 [LT93]). EUROCAE ED-153, for

example, spends a whole chapter on describing requirements and objectives specifically

for software which was not developed according to the ED-153 guideline. The most

important prerequisite for the refactoring itself is a high test coverage, which therefore

implies a wide range of automated unit, system, integration and acceptance tests

[FBB+99]. This automatically leads to high code coverage, which is especially important in

safety-critical software development. Safety standards like the IEC 61508 or the DO-178B

recommend or even require 100 % code coverage [FAA93, IEC10]. Furthermore these

standards require tests on every level of the software integration including component,

system and acceptance tests.

Working in accordance with the recommendations of test-driven development, where the

tests are written before the code, helps the developer to gather immediate feedback

about the recent implementation [Kos07]. In addition, with continuous integration the tests

automatically answer questions such as whether the recently added code has any impact

7 Safety Versus Agile Principles

53

on any other software component of the whole platform. By using automated tests a level

above as well (e.g. approaches like Acceptance Test Driven Development [Kos07]), unit

tests can even provide validation rather than verification only. Therefore constant and

especially automated testing is essential for a high quality software product. This is based

on the fact that software quality cannot be implemented after the coding phase at the end

of the project lifecycle; at this point it can only be verified [Coh09].

Both practices, refactoring and test-driven development, are especially crucial when a

software system is developed continuously over time, e.g. a software product delivered in

releases over several years. Without refactoring there would be the risk of introducing

faults by changing the software, which would lead to more effort in order to correct them

again. While these corrections can cause new faults, the critical point is reached when

the majority of the development work force is used for corrections instead of

implementing new features (also called the “Mythical Man-Month” phenomenon [Bro95])

[Mar08].

7.3 Conflicts

While chapter 7.2 describes the synergies between agility and safety, this chapter

analyses the conflicts between them. The potential sources of conflicts arise out of the

agile values themselves, from process factors or technical practices.

7.3.1 Agile Values

The first conflicts arise from the agile manifesto (see chapter 5.1.1) itself. The first

principle of the manifesto states that individuals and interactions are more valued than

processes and tools; this is in contrast to the very process-oriented approaches used in

safety-critical development environments. For example, the ISaPro® approach (see

chapter 4) even has the term of process in its abbreviation. It consists of a combination of

several multidisciplinary processes that ensure the safety of a system. Even the various

objectives of the standard specification EUROCAE ED-153 (see chapter 3) are structured

in processes. Due to the fact that such process models ensure standardised proceedings,

these approaches are widely spread in technological industry. This has positive effects on

the likelihood of forgetting a task that might be important for guaranteeing the safety of a

software product. But this probability can be decreased by using a definition of done as

well (see chapter 7.2.2).

The question is, whether processes and tools will lead to success, even though the

involved individuals and their interaction and communication are not in the focus of the

project manager. Modern project management approaches acknowledge the increasing

importance of individuals. IPMA (International Project Management Association), a

federation of various project management associations, has defined a set of

competences that a project manager should have in order to successfully manage a

project [IPMA06]. A third of these competences are behavioural ones, which deal

extensively with communication and interaction within the project team.

7 Safety Versus Agile Principles

54

The second agile principle, which probably comes into conflict with a safety point of view,

is that working software is more valued than comprehensive documentation.

Documentation is in line with process-oriented approaches, especially when trying to be

compliant with a standard specification. These documents should provide the evidence to

a potential assessor that the principles of developing safe software were considered

according to the requirements and objectives proposed by the standard specifications.

Therefore it is important that documents are written and regularly updated. But of course

without any working software, they are useless. According to Cohn [Coh09],

documentation should not be neglected, but it should rather concentrate on the most

important issues, especially when it is required by standard specifications. Another

speciality of agile methodologies is the approach of writing the documentation as the

team proceeds with their software product, instead of intensely documenting at the

beginning of the project [Lac12a].

Just as documentation is important in the agile world as well as in safety-critical

development, working software for a safety-critical application is important too. One of the

main drivers of the importance of working software is the increasing trend towards

integration of more than one safety-critical software system into a single application

[Kni02]. Even the most accurately described interfaces have to be tested in advance in

order to be sure that the interworking of multiple systems does not cause any failure.

Therefore an early test of the interface is essential where working software is needed.

Another potential conflict might be the agile approach of delivering software every

iteration while the software product is not finished completely. It is definitely not

acceptable to put unfinished and not extensively tested safety-critical software into normal

operation. This paradox is mainly caused by the fact that there is the possibility that not

all of the safety requirements have been implemented so far and that no comprehensive

verification and validation tasks have been done on the software. A possible solution

could be to prioritise the safety requirements in a way that they are always implemented

first.

In order to relativise the strong statement of not delivering any software that has not been

fully verified and validated, it has to be mentioned that in many cases safety-critical

systems are tested operationally as well [FHL+98]. This means that the software is

deployed in a test environment or in a shadow operation mode (e.g. where a backup

system is running in parallel). For this use case of operational tests it is definitely an

advantage to have working software frequently delivered. This will increase the

assurance of a correctly working software product by using the software as it will be used

in the future. In addition to this benefit it allows the development to gather early feedback

from an operational point of view, which could be used in order to adapt the software

system as it is really needed by the end users. Other possibilities could be that

verification and validation are done within the iteration, or in parallel iterations performed

by a dedicated test team. While the first possibility requires a high level of automated

tests, including validation tests, the second can be accomplished as well using partially

manual tests.

The third agile principle values customer collaboration more than contract negotiation.

While this statement does not conflict particularly with the safety principles, it is common

7 Safety Versus Agile Principles

55

in large and complex industrial projects to offer contracts at a fixed price and scope. Such

contracts shift the temporal and financial risks from the customer to the contractor. Due to

the definition of fixed and strong requirements before starting the project, the customer

usually takes the potential risk of the impracticality of the software system. In such

contracts agile methods would probably be an advantage for the customer as well. Using

an agile understanding, the customer has the opportunity in such a situation to reduce

his/her potential risk of impracticality by changing the requirements. Therefore this can

lead to win-win-situations as well. Issues that have to be considered when using agile

approaches in fixed-bid contracts are also central topics in academic researches by

Franklin [Fra08] and Hoda et al. [HNM09].

The definition of customer collaboration within agile approaches includes the availability

of the customer, which means that the client is in the position to decide and prioritise in a

timely manner [Lac12a]. Some of the approaches even require a representative of the

customer, e.g. a business specialist, to participate regularly in local meetings and

discussions at the contractors’ premises [WB10]. Particularly in international projects

these requirements are difficult to meet because of the high costs that this approach

generates on the clients’ side. A possible solution could be the development of the

software project directly on-site, but this vice versa causes costs on the contractors’ side.

A more practical solution in such cases is the nomination of an internal customer

representative who is familiar with the use cases and the needs of the client.

The last agile principle ranks the response to change before following a plan. This

statement is closely linked to the one regarding customer collaboration. Within agile

development methodologies there is of course a set of requirements designed already in

the beginning of the project, but this set is not the final one [WB10]. The requirements in

this set can be prioritised, exchanged, or removed and it is even possible to add new

requirements, when they get identified. This conflicts with the initial phase of the safety

process, where, based on the requirements, the possible hazards of the system are

identified and assessed (see chapter 4.3). As change requests and volatile customer

needs are part of the majority of development projects including safety-critical ones, such

projects and their corresponding safety cases have to respond to change as well.

7.3.2 Process Factors

The fundamental difference between agile and safety-considering approaches is the

procedure model. Whereas approaches required by safety standard specifications lean

heavily on sequential methodologies like the waterfall- or V-model (see chapter 5.5.1), the

agile methodologies are based on an iterative model. This leads to the main problem of

where to include those tasks in the agile iterations which were done in the beginning and

therefore before the coding in a sequential engineering model. These tasks compromise

the definition of all requirements and the development of the design.

According to agile approaches the design has to evolve [Coh09], which implies that the

decision concerning the design is made, when it is actually necessary. This decision is

therefore taken shortly before the coding for the corresponding requirement is started

7 Safety Versus Agile Principles

56

based on the maximum of available information [WB10]. This is contrary to safety

approaches, where the complete design for the whole software project has to be finished

before starting to code. This is necessary in order to verify within the preliminary system

safety evaluation (see chapter 4.3.3) and software safety design analysis (see chapter

4.3.5) that all safety requirements are considered in the system and software design and

that the design does not cause any harm by itself.

There are also some arguments against an up-front design [PM02]. First of all there are

the high costs for this initial phase and secondly the requested changes, which will

appear occasionally, are quite expensive because of reworking the initial fixed design

[Els07]. This reworking can be done either by going back to the start of the analysis

phase in order to complete the specification or by conducting impact assessments which

identify and specify the effects on all previously generated process outputs. In contrast to

that, there is the agile approach, where plenty small changes have to be done over the

whole project cycle. But these can be accomplished relatively cost-efficiently due to the

use of test-driven development including refactoring and automated tests [Coh09, Els07].

It is important to mention that an evolving design has some prerequisites. Due to the fact

that there will be rework in the code based on changes in the design, it is necessary that

the code is well factored (see chapter 5.2.3) and that there is a suite of automated tests

(see chapter 5.2.2) in order to detect regression problems at an early stage. [Coh09]

Basically, agile projects have to find a balance between anticipation and adaption

[Coh09]. Anticipation reflects the principles of up-front gathering of requirements, design

and front-end project planning. In contrast to anticipation, adaption stands for

incremental, emerging requirements, design and continuous planning [Hig02]. The

appropriate balance for projects is somewhere in between those two extremes. Safety-

critical software will very likely be positioned more on the anticipative side in contrast to

other software projects. The more the project is based on anticipation, the earlier is there

the need for a defined, complete list of system requirements. The disadvantage of this

early list is that there are often requirements specified which are skipped or modified

during the project’s progress [Coh09].

According to agile literature it is possible to have a dedicated software architect in the

team [Coh09, Joh03], although this is actually not intended for an agile team, where every

team member is responsible for all the tasks within the scope of software development.

The software architect should support the person responsible for managing the

prioritisation of the requirements or stories (e.g. the product owner in Scrum) in order to

bring in architectural issues and interests. This results in a combination, where the

prioritisation is done under the premise of customer and technical needs. Ambler et al.

[AL12] calls such an agile software architect an “architecture owner”.

7 Safety Versus Agile Principles

57

This dedicated role of a software architect fits perfectly with the two goals of an iteration

[Coh09]:

 Completion of the planned work of the current iteration

 Preparation for the next iteration

Every single role within an agile team will spend time on achieving both goals, but not in

the same proportion [Coh09]. Whereas common team members will spend a bigger part

of their time achieving the first goal, other roles like the product manager (or product

owner), the agile coach (or Scrum master) or the architect will also spend a significant

amount of their time on preparing the following iteration. This, too, is in line with the

definition of tasks that a product owner has to achieve within the iterations. According to

Lacey [Lac12a], the product owner should spend about 75 % of his/her time on future

iterations instead of the current one.

A good example that proves this separation of achieving both goals is an approach which

was introduced in the development process of the company Autodesk, Inc., called “Just-

In-Time-Design” [Sy07]. While the software developers work on finishing the planned

work in the current iteration, the interaction designers test the implemented design of the

last iteration, preparing the design for the next iteration and gathering customer data for

the near future [Sy07].

So a potential solution for the conflicting situation of up-front or emerging design could be

that the first iterations are just used to develop an initial design based on rough feature

sets. Then this design is evolved over time based on the requirements, which have to be

met. In addition, the documentation necessary for the safety assurance of the software,

e.g. the safety case (see chapter 2.5), has to be updated regularly in line with the design.

This evolution can be supported by a dedicated software architect, who tries to

accomplish a conscious design by managing the prioritisation of the requirements. An

example for this managing process could be that software parts which were identified by

the team as those parts with the most uncertainty are started in one of the first iterations

to keep the risk of failure at a low level [Coh09].

7.3.3 Technical Practices

Within agile approaches it is common that requirements are defined as user stories (see

chapter 5.2.1). That implies that requirements are examined from an end user’s point of

view. Derived safety requirements are, in contrast, usually expressed in a very technical

way; e.g. “The system shall not cause hazard ‘X’ to exist more than ‘y’ % of the time.”

[Fir05]. Agile literature recommends phrasing non-functional requirements in user stories

as well, if this is possible and reasonable [Coh08, Dav09]. The issue with non-functional

requirements, like safety requirements, is that these are constraints over the whole

project lifecycle. This implies that such stories cannot be fully accomplished within a

single iteration. A possible solution might be to take such a story into an iteration,

accomplish it and put it as a constraint from now on in the definition of done or in the

acceptance criteria for each following story [Coh08].

7 Safety Versus Agile Principles

58

Another issue regarding constraining stories is that in many cases the business value is

not visible on the surface. This leads to the threat that those stories get a lower priority

due to this lack of clarity. Therefore the corresponding experts, e.g. the safety engineers,

have to ensure that those stories are not getting out of sight of the product manager who

is responsible for the requirement prioritisation. It might be reasonable to determine a

defined quota of story points per iteration for “technical” stories, which have to be

accomplished within the iteration [WB10].

Another potential source of danger is the fixed timeframe schedule used in agile

approaches. At the beginning of such a time frame the team decides what to accomplish

within the iteration. This can lead to time pressure when it is recognised that the work

cannot be finished by the end of the iteration. In turn this can cause the decrease of

software quality [WB10], which results in short-term success only, because introduced

failures lead to more work and the decrease of the team’s performance.

8 Agile Procedure Model

59

8 Agile Procedure Model

As the previous chapters indicate, an agile procedure model has to be adapted in order to

meet the needs of safety-critical software development. It is simply impossible to adopt an

agile approach like Scrum or Extreme Programming (see chapter 5.3) without any

modifications within such a particular area of software development. This chapter

describes the design for an agile procedure model that values the agile manifesto and its

principles, while including activities and tasks necessary for safety-critical software

development. Due to the inclusion of these activities and tasks, this agile procedure

model is called the >Safety Assured Agile Procedure Model<, abbreviated as SAAPM.

“[…] it is now widely accepted that [software development] methods should be

tailored to the actual needs of the development context.”

Fitzgerald et al. [FRO03]

This quote from Fitzgerald et al. [FRO03] points out that the tailoring of software

development procedures is widely accepted in industry. However, there is one thing that

is of the utmost importance when tailoring a method: there must always be a reason to

recommend doing something in other than the preferred way. Therefore the organisation

tailoring the method has to be fully aware of the modification and its effects.

The agile procedure model SAAPM relies on the values, principles and practices of agile

software development (see chapter 5) while integrating all the necessary tasks that have

to be fulfilled in order to be compliant with a safety standard specification (see Annex B).

This integration should establish a consensus between the two approaches.

Basically, the procedure model consists of four phases as depicted in Figure 20. The first

phase – the pre-game phase – is used for creating the product vision, the initial product

backlog and the first high-level software architecture. The aim of the iteration-driven

phase is the evolvement of the software architecture based on the backlog items which

are implemented. In addition, architectural and safety-related issues are prepared for the

upcoming iterations. The third phase – the spin-off phase – is used for the deployment of

software. It therefore contains all the preparation tasks necessary for deploying the

software into either a test or production environment. The last phase is the wrap-up

phase. It takes place when the software system development is finished and comprises

the tasks of the spin-off phase supplemented by project close-down activities.

8 Agile Procedure Model

60

Pre-game
phase

Iteration-driven phase

Spin-off phase

Spin-off phase

Wrap-up
phase

Figure 20: Four Phases of the Agile Procedure Model SAAPM

Chapter 8.1 defines the preconditions and the constraints for such a model. Without a

context and constraints the procedure model would have to be very generic, which is not

feasible when developing a model for such a specific field of software development.

Chapters 8.2 to 8.5 describe the content of each phase of the SAAPM. The central topic

in chapter 8.6 is the compliance with EUROCAE ED-153 (see chapter 3). Finally the agile

procedure model is evaluated from different perspectives in chapter 8.7.

8.1 Preconditions and Constraints

The first issue that must be resolved before introducing this procedure model is the

transition of the organisation itself to an agile approach. Many project teams introducing

agile methods in their projects struggle due to the traditional culture of their organisation

or lack of adequate support from management [BT05, GBL+04, Hir05]. There is much

literature available that documents which prerequisites are necessary within the

organisation or which approaches might be successful [CF03]. Therefore this thesis

supposes that the organisation has already introduced agile methods or is at least ready

to adopt them.

Another issue that deals with the adoption of agile methodologies in organisations is the

use of technical practices that are often referenced by agile approaches. As already

outlined in chapter 5.2 these technical practices facilitate the achievement of agile values

and principles. Therefore this thesis supposes that the agile development model SAAPM

includes the responsible use of these technical practices.

A further organisational topic is the size of the project and its teams. Agile approaches fit

best with small to medium-sized teams of five to a maximum of nine team members. If a

project needs more human resources, teams are divided into multiple of sub-teams. This

setup introduces new challenges such as the coordination of overall development and

integration, for example. These topics are addressed by some approaches such as

“Scrum of Scrums”, which is an approach for scaling agile to larger teams and

organisations [Coh09]. For the purpose of this thesis, the SAAPM sticks to small and

medium-sized teams, where there is the assumption that only up to three agile teams

develop the software.

8 Agile Procedure Model

61

The difference between the development of a new system and the refinement and

enhancement of legacy systems is another issue which has to be considered. As already

mentioned in chapter 5.4, agile methods are well suited for “green-field” projects [Kru10],

where the system is built up from scratch. The difficulties raised by legacy systems are

mainly related to the fact that these systems were often not built considering the

principles of agile methodologies. Technical practices such as test-driven development

(see chapter 5.2.2) cannot be implemented after the system has been built. The legacy

system has to go through an interminable process in which individual challenges appear

that have to be met by the development team [BT05]. As there are already some

documented experiences of using agile methodologies in combination with legacy

systems [Han11, SP04], these are not targeted in this thesis.

The last issue is the safety criticality of the project or product that has to be developed.

Safety integrity levels addressing high safety-critical developments require rigorous

certification procedures for the software development tools or even the code itself. In the

case of EUROCAE ED-153 [EUROCAE09], object no. 4.3.19 requires validation and

certification for compilers, linkers and code generation tools when dealing with highly

safety-critical systems (see Annex A). As these additional tasks demand tremendous

effort, such safety criticality levels are considered as out of scope for this thesis.

8.2 Pre-game Phase

When Schwaber [Sch97] introduced his agile methodology Scrum in 1997, he

recommended a preparation phase at the beginning of the software development called

“Pre-game”. Although this pre-game phase is not mentioned again in later literature by

Schwaber [Sch04], it is considered for this particular approach.

According to Schwaber this initial phase should target planning and architecture. Planning

comprises the definition of a software release based on the backlog already known and a

rough estimation of its schedule and costs. In the case of a new system or product being

developed, this phase contains, as well as analysis, the conceptualisation of the system.

The architecture is accomplished by a high-level design for how the items of the product

backlog will be implemented. [Sch97]

Schwaber’s definition of the pre-game phase [Sch97] is the origin for the first of four

phases representing the particular agile procedure model SAAPM for safety-critical

software development. In order to meet the needs of such a development project, this

pre-game phase has to be modified and extended. These modifications are introduced in

the following paragraphs.

8.2.1 Workshop Organisation

First of all the conditions for this initial phase should be clarified. The phase is carried out

in the form of a workshop that lasts several days at a minimum, depending mainly on the

size of the prospective software system. It is essential that this workshop does not take

8 Agile Procedure Model

62

so long that it might be perceived as the entire requirement engineering and design

phases of a traditional approach (see chapter 5.5.1). The objective target of this

workshop is the effective and efficient rough modelling of the system or product.

Therefore the recommended duration of this initial pre-game phase is about three to

twenty days depending on the project’s context.

The workshop’s success relies heavily on the precondition that the skilled and

experienced future team members are among the participants. This ensures the

interdisciplinary skills needed in order to accomplish this initial phase very efficiently. In

the very particular context of safety-critical software development, at least the following

roles are required for the workshop:

 Product manager(s)

 Representative(s) of the client(s) or internal customer representative(s) (e.g.

product owner)

 Agile coach (e.g. Scrum master)

 Software architect(s) or senior software developer(s) (e.g. architecture owner)

 Safety engineer(s)

 Software developer(s)

The so-called “architecture owner” role is relatively unknown compared to the other roles

mentioned [AL12]. It basically represents the software architect in an agile team. While

the software architect is the primary creator of the architecture in traditional role

perceptions, the architecture owner is primarily responsible for facilitating the architecture

modelling. This modelling should be done collaboratively within the development team,

where the architecture owner is still the final decision-making authority. [AL12]

The workshop should be well structured in order to proceed efficiently. Therefore it is

highly recommended that it is organised into the following three parts:

 Creation of the system or the product vision

 Development of the technical concept

o Rough catalogue of requirements

o High-level system architecture

 Performance of the first safety analysis

8.2.2 Part One: Creation of the System or the Product Vision

The first part of the workshop is the creation of a shared system or product vision that

inspires all team members. The product owner should take the lead in this part of the

workshop due to his/her responsibility for the big picture of the system or product.

Basically the aim is to establish a common understanding of how the final system or

product should look. Therefore it is essential that all participants understand the

requirements set by the customer or the market. In addition, it helps to promote a

commonly known, positive side effect that team members who work with a shared vision

in mind are more motivated than those who do not [Sch11].

8 Agile Procedure Model

63

"Imagination gives you the picture. Vision gives you the impulse to make the

picture your own."

Robert Collier

8.2.3 Part Two: Development of the Technical Concept

The development of a technical concept including an approximate estimation of costs and

lead time is the second part of the pre-game phase. The technical concept is based on

the information provided by the customer or the project owner in the form of system

requirements and project goals. The technical realisation possibilities that fulfil these

goals and requirements are the main content of the technical concept. Therefore it

consists of a rough catalogue of requirements and the high-level system architecture. The

catalogue of requirements is created using creativity techniques (e.g. brainstorming)

performed under the lead of the product owner. In contrast, the high-level system

architecture needs a more structured approach, which is guided by the architecture

owner.

The development of the key requirements should be achieved in a relatively short period

of time. This process is supported by the vision created in the first step, the needs of the

customer(s) and market(s) and/or by a formal requirement specification document. The

primary goal is to detect the main requirements which are crucial for the functionality of

the system or product. In a further step these requirements are written as user stories to

an initial product backlog that are ordered according to their business value.

The high-level design of the system architecture includes the definition of the boundaries

of the system, its context, its interfaces and finally its internal components. This initial

envisioned architecture should ensure a first technical direction and its potential risks that

have to be dealt with [AL12]. To be in line with this objective, this modelling of the high-

level design should not result in an entire system design. This process should rather

consider basic principles linked to agile architecting [Sta11]:

 Attach importance to flexibility and not to inflexible patterns

 As little formalising as possible, but as much as necessary

 Level of documentation should correspond to the particular risk of the system or

system component

This modelling phase should also be used for identifying critical components and/or parts

of the system. This will help the process of prioritisation in the beginning of the

development phase, where the most critical parts should be developed first in order to

minimise risk [Lac12a]. To efficiently create such a design that meets all previously

targeted objectives, the four-step-approach depicted in Figure 21 can be used:

8 Agile Procedure Model

64

System
SystemInput Output System Output

1 2 3 4

Input

Figure 21: High-level Design of System Architecture

1. Identification of system boundaries

In the first step the boundaries of the system have to be clearly identified. This is

necessary in order to determine which parts are inside and outside of the system [SW01].

A clear model of the system including its boundaries also helps to identify hazards in the

third part of the workshop (see chapter 8.2.4).

2. Identification of system actors

The next step is the identification of the system actors. Actors are anything that interfaces

with the system; e.g. people, hardware, data stores, bus systems, networks or other

software. Each of the actors defines a particular role that acts with the system. An entity

(e.g. a person) is represented by either one or more actors in the case that the entity

takes on different roles with regard to the system. Conversely, several entities can be

represented by one actor when they all take the same role. The system itself is perceived

as a black box and therefore only its interactions with the world outside are modelled.

[Sta11, SW01]

3. Identification of system interfaces

In the third step the interfaces of the system are identified. Interfaces are those parts of

the system where the actors interact with the system on its boundary. Such interfaces

could be either direct, messaging or user-machine interfaces [Sta11]. It is of the utmost

importance that these system interfaces are well specified in order to avoid malfunction of

the system.

4. Identification of system’s internal components

The last step is the identification of the internal components and their internal interfaces.

It helps to identify the building blocks of the system in order to determine their structure

and their connections [Sta11]. Furthermore this fourth step helps to get an overview of

which components must be built in order to fulfil the initial requirements.

8.2.4 Part Three: Performance of the First Safety Analyses

The system or product vision and its technical concept are the ideal inputs for the first

safety analyses, which are necessary in the development of safety-critical software

8 Agile Procedure Model

65

applications. The advantage of doing these analyses within the workshop in close

collaboration with the interdisciplinary team members is that the coverage of identified

safety issues is increased. This fact is also emphasised by a statement of Poppendieck et

al. [PM02] in which she recommends consulting a lot of knowledgeable people in order to

determine all safety issues. In addition, there is the optimal condition that the whole team

has basically the same deep system knowledge due to the work that they have achieved

in the first two parts of the workshop. This part of the workshop should be guided by the

safety engineer, who is also familiar with the methods and tools used in such safety

analyses (see chapter 2.4).

This last part of the workshop comprises the first phase of the safety lifecycle, the

preliminary hazard identification (see chapter 4.3.1). The main aim of this process is to

identify all potential hazards to which the system can lead. Therefore the previously

defined interfaces of the system have to be analysed by using checklists, historical data

from former projects or creativity methods (e.g. brainstorming).

As this preliminary hazard identification progresses, more detailed analyses can be

carried out. These analyses are part of further safety lifecycle processes on the system

and software level that have to be started at the latest in this early stage. Those

processes are:

 System level: functional hazard evaluation (FHE) and preliminary system safety

evaluation (PSSE) (see chapters 4.3.2 and 4.3.3)

 Software level: software safety requirements analysis (SSRA) and software safety

design analysis (SSDA) (see chapters 4.3.4 and 4.3.5)

The identification of unacceptable hazards results in the modification and improvement of

the high-level design of the system architecture. Afterwards the preliminary hazard

identification can be continued. This iterative process lasts as long as the high-level

architecture results in hazards that exceed the level of acceptable risk. All safety lifecycle

processes which are started in the workshop have to be continued for the duration of the

whole project lifecycle in the iteration-driven phase (see chapter 8.3).

Within these analyses different techniques and methods can be used (see chapter 2.4).

Apart from their approach, they also differ in their requirements for information [GPM10].

Table 9 summarises the information that is needed in order to perform the particular

methods.

8 Agile Procedure Model

66

Safety Analysis
Technique

Required Information

FMEA
(see chapter 2.4.2)

 System architecture structure

 Failure modes and their effects on components

HAZOP
(see chapter 2.4.3)

 System architecture structure

 Potential system failure modes (key words)

 Failure behaviour of components

 Functional component description

FTA
(see chapter 2.4.4)

 System architecture structure

 System failures (as top events for the fault trees)

 Functional component description

Table 9: Required Information per Safety Analysis Technique [based on RCC99, GPM10]

8.2.5 Outputs

After identification of the vision, key requirements, preliminary high-level design and

safety-related issues, these results can be aggregated into an initial plan. In addition to

these achieved workshop outputs the plan should also include definitions of the further

“way of working” [TSS12]:

 Compliance to norms, standards and rules

 Definition of done (see chapter 7.2.2)

 Use of support tools

Agreement on which norms, standards and rules should be fulfilled is necessary to create

a common view among all team members. Apart from the safety standards, which are of

the utmost importance, design and coding rules should be defined too. Such design and

coding guidelines facilitate the team’s achieving well-structured and clean source code.

As already described in chapter 7.2.2, the “Definition of Done” [Lac12a] should ensure

that each requirement or feature passes all necessary checks in order that it can be

ticked off as done. Such a definition should consider at least the following tasks:

 Evaluation of safety impacts on the system

 Implementation (coding) including unit tests

 Update of documentation

 Conducting of code reviews

 Addition of dedicated test cases (for verification and validation)

A wide variety of tools is supported for each particular demand of agile software

development. Some of these tools even provide complete solutions in which the aspects

of requirements, development and test management are included. Agile practices usually

8 Agile Procedure Model

67

recommend using simple methods such as index cards and large visible charts [BA04].

While these seem to be adequate for some projects, computer-assisted tools help the

team immensely in documenting necessary artefacts and traces which might be required

by safety standard specifications or other regulations.

8.3 Iteration-driven Phase

In the second phase of the SAAPM, the software development starts its progress in time-

boxed intervals called “iterations” [Sch04]. According to agile definitions (see chapter

5.3.2), these time boxes should last one to four weeks, depending mainly on the

circumstances of the project. Because of the vast quantity of influencing factors, Lacey

[Lac12a] developed a model in which the iteration length is determined by answering a

questionnaire. Due to the availability of this approach, the determination of the iteration

length is not considered in this agile procedure model.

8.3.1 Responsibility Assignment

In order to ensure an evolving design and the safety assurance of the software over all

upcoming iterations, some of the team members with a particular role have specific tasks.

The software developers are mainly working on the core goal of the sprint, the completion

of all agreed backlog items. In parallel, a team guided by the product owner including the

architecture owner and the safety engineer has further particular responsibilities. This

team is referred to as the >Product Architecture Team< in the following paragraphs.

Figure 22 depicts the collaboration between these two teams in order to achieve the three

main aims of an agile iteration in the SAAPM.

Product
Architecture Team

Software
Developers

Completion of
current iteration

Preparation of next
iteration

Evaluation of last
iteration

Responsible

Consultative

Consulta
tiv

e

Consulta
tiv

e

Responsible

Responsible

Figure 22: Role Responsibilities

8.3.2 Product Architecture Team

This team is built up of the product owner, the architecture owner and the safety

engineer. It has responsibility for the particular tasks of preparing the next iteration and

evaluating the last iteration.

8 Agile Procedure Model

68

Preparation of the next iteration

For the product owner him/herself, the first task – the preparation of the next iteration(s) –

is of the utmost importance. As this person is responsible for the product backlog, he/she

has to enter new user stories including their acceptance criteria. Furthermore he/she has

to prioritise these stories according to their business value. The architecture owner and

the safety engineer are basically types of stakeholder. They have to ensure that

architectural and safety-related issues are appropriately considered in the product

backlog.

The architecture owner is responsible for controlling the system architecture by

influencing the order of the product backlog or by entering user stories that are necessary

for a well-considered architecture. This architecture has to be prepared for the upcoming

requirements in the backlog, especially for the safety-related requirements. The product

owner must be convinced that such stories and/or a reordering of the backlog have the

business value that justifies the backlog’s modification. A similar approach was identified

as a practice in some agile projects in India and New Zealand by Hoda et al. [HKN+10]. In

their context this approach was called the “design pipeline” [HKN+10].

The safety engineer’s duty is the continuous safety analysis of the upcoming

requirements. It is his/her responsibility to ensure that the impact of these requirements,

especially when they are newly entered, is analysed and evaluated. These tasks are the

continuation of the software safety requirements and design analyses of the pre-game

phase (see chapter 8.2). Therefore it has to be analysed whether these upcoming

requirements will introduce new hazards which might affect existing safety requirements

or require completely new ones. Afterwards the system architecture has to be assessed

to check if it is still capable of dealing with the safety requirements. Tasks that must be

achieved by the software developers are inserted as user stories that are put into the

product backlog. Their business value is obvious and therefore it is easy to argue for

them. In the case that these safety-related requirements are not implemented in the

software, the whole system or product is potentially not safety-assured. This may lead to

a system that cannot be used in a production environment and therefore is basically

useless for the customer, which means that such safety requirements automatically have

a high business value for the system.

In summary, all three particular roles must work closely together in order to ensure a well

prepared product backlog for the next iteration. This has to be achieved within the

iteration and therefore should also be considered as a factor in the determination of the

iteration length. To be in line with the agile values and principles (see chapter 5.1) the

preparation is done by involving the whole team, establishing commitment to the

decisions that have to be made. The result of this process is the timely preparation of the

requirements, including their impact on the system architecture and safety assurance,

before the next iteration starts. This approach can be called a >Just-in-Time-Safety-

Assured-Design<, which is derived from an approach by Sy [Sy07], whereby the user

interface design is delivered just in time to the agile development team (see chapter

7.3.2).

8 Agile Procedure Model

69

Evaluation of the last iteration

Under the premise that the agile team has achieved its goal of the previous iteration and

therefore finished all committed backlog items, the evaluation of that iteration can take

place.

Therefore the system architecture is critically reviewed by the architecture owner in terms

of whether it is applicable for its purpose and the future needs of the system. Necessary

changes will be directly integrated in the preparation of the next iteration and will most

likely find their way into the product backlog.

The safety engineer verifies that all safety requirements and constraints are well

considered and correctly implemented. This should be done in such a way that the

remaining risks caused by the system or product are below an acceptable level. Basically

the safety engineer performs the tasks of the last safety process within the safety

lifecycle: the system safety evaluation (see chapter 4.3.6).

8.3.3 Software Development Team

While the product architecture team has particular tasks, the software development team

is mainly working on implementing the user stories that have been committed for this

iteration. Apart from this task, the system architecture is refined over the lifecycle of the

system according to the preparation done together with the architecture owner.

The first iteration has a special significance, as only the preparation output of the pre-

game phase is available. When implementing the previously designed, high-level system

architecture, it is recommended that it is done according an approach developed by

Cockburn [Coc04] called “Walking Skeleton”. This approach is about implementing a tiny

architecture that should link together the main architectural sub-elements or components

in order to provide minimal end-to-end functionality [Coc04]. This initial walking skeleton

can then be refined and extended within the following iterations.

Another important task for the development team is to support the architecture and safety

persons in charge. This should be achieved in dedicated meetings in which a particular

issue is the topic and the experts discuss it and try to find possible solutions. Such issues

can be architectural, safety-related or generic. No matter what kind of issue occurs, the

recommendation is that the decision should not be made without seeking advice from the

team members.

8.3.4 Documentation

The importance of documentation in safety-critical software development cannot be

denied. Whereas sequential approaches document all outputs of the initial analysis and

design phases, in agile development this has to be done iteratively. No matter what kind

of documentation is produced, it has to be started in the pre-game phase and has to be

evolved over the project lifecycle.

8 Agile Procedure Model

70

The minimum necessary documentation artefacts are:

 Requirements including safety requirements

 Architecture and design documents

 Safety documents (e.g. safety arguments, evidences and safety case)

The safety documentation particularly challenges the safety engineer(s). In order to

create a safety case, it is necessary to provide a detailed safety argument that points out

how the safety of the system will be achieved. This argument is usually created

monolithically as it is designed for the complete software system. Due to the fact that it

has to be created in iterations, it is recommended that safety arguments are created per

software module [GPM10]. Afterwards these single modular safety arguments can be

linked to a software system safety argument that consists of all arguments of its

subsystems and an argument that deals with the interactions of the single modules

[GPM10]. Such a whole picture is necessary, when the system has to be delivered to go

operational (for example in the spin-off or wrap-up phase).

8.3.5 Overall Picture

Figure 23 depicts the overall interaction between the pre-game phase, the iteration-driven

phase and the team focusing on their particular tasks.

Architecture/Design
Preliminary Hazard

Analysis

Pre-game

Initial preparation
of architectural

structure

Refinement of
architecture and
implementation
of requirements

Refinement of
architecture and
implementation
of requirements

Preparation of next
iteration

Evaluation of last and
preparation of next

iteration

Evaluation of last and
preparation of next

iteration

Prepare Prepare

Evaluate

Team

Development Team

Product Owner
Architecture Owner

Safety Engineer

Iteration 1 Iteration 2 Iteration 3

Evaluate

Figure 23: Interaction between Pre-game and Iteration-driven Phase

In the pre-game phase, the whole team works together to achieve a high-level design for

the system architecture and the preliminary hazard analysis. When entering the iteration-

driven phase, the focus is divided into two sub-groups. That does not imply that the team

is split up; it is only the focus which will be different in the upcoming iterations (see also

Figure 22). The arrows depicted in Figure 23 show the flow of information for the

particular tasks of evaluation and preparation. These flows also depict the

interdependencies between the two focused teams. Most of their work depends on the

completion of activities of the other team, one iteration before. This fact should indicate

that the agile procedure model SAAPM requires rigorous self-discipline and the fulfilment

of commitments.

8 Agile Procedure Model

71

8.4 Spin-off Phase

As depicted in Figure 23, the iteration-driven phase might proceed until the project of

developing a system or product is completely finished. However, this differs from the

principles of agility, where continuous and frequent delivery is a central principle (see

chapter 5.1.2).

For the purpose of the SAAPM, two different deliveries are distinguished. Whereas the

first option has the purpose of running the system in a test environment (see chapter

8.4.1), the second has the purpose of taking the system operational (see chapter 8.4.2).

8.4.1 Test System Delivery

In the case of the first delivery alternative (also called “dry run” [VB09]), the technical

practices recommended for agile approaches should ensure the appropriate functionality

of the system. These technical practices are mainly test-driven development (see chapter

5.2.2) and continuous integration (see chapter 5.2.5). Both should make sure that the

software is continuously verified by automated unit tests. This should lead to a culture of

“zero defects”, which was first introduced in 1979 by Crosby [Cro79]. Such a culture is

characterised by a team that solves errors as soon as they have been raised by a system

or a person. This procedure should ensure that the software is ready for deployment

every iteration. Such a test environment can either be the manufacturer’s or the

customer’s. It is highly recommended that this opportunity is used in order to allow the

development process to gather immediate and continuous feedback from the testers or

even better directly from the customer or end users.

8.4.2 Operational Delivery

The second delivery scenario requires a dedicated phase: the spin-off phase. Within the

area of safety-critical development it is often necessary that the system is completely

verified and validated before it is ready for operation. In some cases it is necessary to

have these tasks performed by an independent party as well. Some business areas even

require external approval, e.g. by an authority. As unit tests are not independent [VB09],

those tasks have to be done separately. Therefore the current software version is frozen

and from that point on treated in a separate path as depicted in Figure 24.

8 Agile Procedure Model

72

Refinement of
architecture and
implementation
of requirements

Refinement of
architecture and
implementation
of requirements

Refinement of
architecture and
implementation
of requirements

Iteration n Iteration n + 1 Iteration n + 2

(Independent) Verification and Validation
Finished Documentation

(Certification and Approval)

Product Owner
Architecture Owner

Safety Engineer

Development Team

Operational Phase

Spin-off Phase

Iteration-
driven Phase

Decision

Refinement of
architecture and
implementation
of requirements

Refinement of
architecture and
implementation
of requirements

Evaluation of last
and preparation of

next iteration

Evaluation of last
and preparation of

next iteration

Iteration n + 3

Evaluation of last
and preparation of

next iteration

Evaluation of last
and preparation of

next iteration

Evaluation of last
and preparation of

next iteration

Iteration n + 4

Figure 24: Interaction between Iteration-driven and Spin-off Phase

In this dedicated path the whole preparation for the operational phase is done:

 Comprehensive tests which verify and validate the software

 Completion of the documentation

 Optionally, the certification and approval of the software by an external party

The type of the tests depends on the context of the project and also on the customer. It is

recommended that at least integration, load and acceptance tests should be done in this

phase. The completion of the documentation, which was iteratively written, is also an

important part of this phase. The safety documents in particular should be finished

carefully in order to be sure that all necessary issues are covered. After they are finished,

they can be released in order to have them officially available. In a last step, the software

optionally can be certified and approved, if that is required by law or other regulations.

This is usually done by an external authority that approves the correct process of

software development within a safety-critical environment. Due to the different tasks that

could be necessary, there is no recommendation regarding the lead time for such a spin-

off phase.

8.5 Wrap-up Phase

The last phase of the agile procedure model has to achieve basically the same tasks as

the spin-off phase (see chapter 8.4). The difference between them is that the wrap-up

phase is the phase that finishes the system or product development. Therefore this phase

is supplemented by project close-down activities such as the transfer of all the lessons

learned into the line organisation. After this phase, the system is handed over to

maintenance. Figure 25 depicts the dependencies between the iteration-driven phase and

this phase.

8 Agile Procedure Model

73

Refinement of
architecture and
implementation
of requirements

Refinement of
architecture and
implementation
of requirements

Iteration n - 2 Iteration n - 1 Iteration n

(Independent) Verification and Validation
Finished Documentation

(Certification and Approval)

Product Owner
Architecture Owner

Safety Engineer

Development Team

Operational Phase

Wrap-up Phase

Iteration-driven Phase

Decision

Evaluation of last
iteration

Evaluation of last
and preparation of

next iteration

Evaluation of last
and preparation of

next iteration

Figure 25: Interactions between Iteration-driven and Wrap-up Phase

8.6 Compliance to Adapted ISaPro® and EUROCAE ED-153

This chapter intends to ensure that the agile procedure model is compliant with the

adapted ISaPro® (see Annex B) and therefore with EUROCAE ED-153 (see chapter 3) as

well.

This assurance is provided by mapping the activities within the adapted ISaPro®

framework, which are necessary to fulfil ED-153 (see Annex B), to the phases of the

SAAPM. The mapping is done by analysing in which phase of the SAAPM the activities of

the adapted ISaPro® framework fit best. Due to the iterative approach, a major part of the

activities have to be carried out in more than a single phase. The detailed results of this

process including the data of the evaluation are provided in Annex B.

Basically it is possible to map all activities required by ED-153 to the agile procedure

model SAAPM as depicted in Annex B. But in line with the rigorousness of the SWAL

(see chapter 3.2), the agile procedure model gets more and more inflated by the required

activities. Figure 26 depicts how many activities are required per SWAL per ISaPro®

lifecycle. As can be seen, the engineering lifecycle in particular requires many more

activities in line with a more rigorous SWAL. Due to the fact that a lot of activities, even

those required by SWAL 4, require more granular and detailed activities in the case of

more rigorous SWALs, these charts can be viewed only as a high-level perspective.

Project Management Lifecycle Engineering LifecycleSafety Lifecycle Supporting Processes

Figure 26: Comparison of Activities required per SWAL in ISaPro
®
 Lifecycles

8 Agile Procedure Model

74

Figure 27 charts the distribution of all activities in the particular phases of the SAAPM. As

a large majority of the activities start in the pre-game phase and then evolve over time in

the iteration-driven phase, these two phases have the most activities assigned.

Figure 27: Required Activities per Agile Procedure Model Phase

Therefore it is of utmost importance that the workshop in the pre-game phase is carefully

planned and prepared in order to comprise all necessary activities in a reasonable

amount of time. In addition, the iterations have to be efficient, as there are more than a

hundred tasks that have to be considered. Due to this high number of tasks, agile

iterations within the area of safety-critical software are usually longer than in other agile

software projects (e.g. [Che09]).

Figure 28 shows the distribution of activities of the ISaPro® lifecycles over the different

agile procedure model phases. Whereas the activities of the project management

lifecycle are spread evenly over all phases, safety activities are mainly concentrated in

the first and second phases. The engineering activities have to be achieved primarily

within the iteration-driven phase, while the support processes are evenly distributed

throughout the last three phases.

Figure 28: Distribution of ISaPro
®
 Lifecycle Activities over Agile Procedure Model Phases

8 Agile Procedure Model

75

As outlined already in the previous paragraphs, it is possible to map or assign all activities

to the phases of the SAAPM. Nevertheless the team members have to be aware that a

development project in the area of safety-critical software systems and applications is

more challenging than in many other industries. The achievement of all necessary

activities can only be ensured if all team members, including their management, are

disciplined enough to efficiently conduct all phases of the model. This should be in line

with the agile principles and values as well, according to which the interaction between

team members, working software, customer collaboration and the respond to change are

crucial.

8.7 Evaluation of Agile Procedure Model

This chapter deals with the final evaluation of the SAAPM. The evaluation consists of the

proof of agility, the analysis of advantages and disadvantages and the forecasted

applicability of the procedure model.

8.7.1 Proof of Agility

This section discusses the question of whether the agile procedure model is still agile,

given that some adaptations have been made, in comparison to common agile

approaches. Therefore the agile procedure model SAAPM is evaluated according to the

agile values in the form of the agile manifesto (see chapter 5.1.1) [Cun01].

Individuals and interactions over processes and tools

In the description of the agile procedure model SAAPM, the term >processes< is used

quite often. This is mainly because of the frequent use of this term in safety-relevant

domains. In such business areas, everything is organised as and within processes. But of

course there is a need for individuals and interactions. Without them, it is impossible to

build even a chaotic system.

A process is defined as a network of activities performed by resources that transform

inputs into outputs [WS07]. Therefore agile activities can be seen as processes as well.

For example, each requirement or user story (the input) is transformed during

implementation into a defined functionality (the output). This output is further defined as

>done< (see chapter 7.2.2), which ensures that all outputs meet a predefined quality

level.

It is essential to choose the appropriate tools. They can make the team members’ life a

whole lot easier, especially when the project involves multiple and/or globally distributed

teams. In addition, the majority of tools ensure documentation and traceability alongside

their primary use, which saves a lot of time in providing the necessary artefacts required

by safety standard specifications.

8 Agile Procedure Model

76

Concluding, it can be stated that the agile procedure model SAAPM values individuals

and interactions more than processes and tools. Processes and tools should rather be

considered as enablers for high-quality and modern software development.

Working software over comprehensive documentation

Working software is achieved by the iterative process, where all iterations should be able

to deliver a potentially shippable product. In the agile procedure model SAAPM, the so-

called spin-off phases handle the delivery of software. The preparation tasks for this

deployment depend on whether the system is delivered only to a test system or to a

production environment.

Comprehensive documentation is targeted by the agile device that only as much

documentation as necessary is created to fulfil the regulations. Within safety-critical

software development, documentation cannot be avoided due to the need to provide

justification that all safety issues have been considered. Therefore the tools should be

used in an intelligent way whereby the automatic mechanisms for documentation and

traceability are leveraged.

“Customer collaboration over contract negotiation”

Customer collaboration is not directly considered within the SAAPM. By enforcing

iterative development and frequent delivery, continuous feedback should be facilitated.

Whether this feedback is provided by internal stakeholders, customer representatives or

the direct customer is not important to the model itself. To be in line with the agile values,

the customer should of course be involved as much as possible.

“Responding to change over following a plan”

Responding to change is also facilitated by the iterative development procedure. It allows

prioritising of the product backlog continuously over time. This should be done with

discernment, as this reordering of the backlog must be in line with architectural and

safety-related concerns.

Although there is the agile recommendation to value “responding to change” higher than

“following a plan” [Cun01], the process of planning is important. Without planning, the

agile process would result in chaos just like any other unplanned process. Therefore

planning should be achieved by analysing upcoming requirements, forecasting the

progress of the team(s) and communicating with stakeholders.

“Plans are of little importance, but planning is essential.”

Winston Churchill

8 Agile Procedure Model

77

8.7.2 Advantages & Disadvantages

This section compares the agile procedure model SAAPM to traditional approaches (see

chapter 5.5.1). More precisely, this section points out the advantages and disadvantages

of the model.

The following advantages could be identified, where some of them are in line with

common knowledge of advantages using agile methodologies (e.g. [AL12, PW09]):

 Light-weight initial pre-game phase

o Use of the efficiency of an interdisciplinary, well-structured workshop

o Benefit from the fact that only the system that is well-known is modelled and

where the risk of change is quite low

 Starting with components and modules that are fraught with risk in order to detect

shortcomings of the initially modelled system at an early stage

 Benefit from modern technical practices (see chapter 5.2) that focus on maximising

the quality of the source code

 Continuous and prompt feedback after implementation

o Possibility of modifying the system during the development phase

o Approaching maximal customer satisfaction due to the delivery of a system

that fits the customers’ real needs

 Securing a well-designed and safe system by considering architectural and safety-

related issues in the process of product backlog prioritisation

 Dedicated phases for providing the opportunity for verification and validation of the

system by independent and/or external parties

But as there is no model that has only advantages, the following disadvantages could be

identified:

 Risk of changing requirements that affect system architecture or safety

requirements in such a way that the system has to be extensively modified

 Need for complete upfront design in order to determine the runtime behaviour of

the whole system (for example when dealing with tight real-time requirements)

 Iterative creation of documents might require more effort than initial creation due to

frequent rewriting necessitated by changes

 Particular technical expertise is needed over the whole lifecycle instead of in the

initial planning and design phase only

8.7.3 Applicability

To answer the question of applicability of the SAAPM is quite difficult. In order to provide

significant results, the procedure model has to be compared to traditional models within

empirical studies. If resources are not the limiting factor, these studies have to be

performed on various different safety-relevant software development projects:

8 Agile Procedure Model

78

 Small co-located to medium-sized globally dispersed teams

 Safety-relevant to highly safety-critical projects

 Software system and software product development

Apart from the fact that the proof of applicability has to be done within empirical studies,

the agile procedure model SAAPM fits best to projects that are within the defined

preconditions and constraints (see chapter 8.1). This is also circumstantiated by studies

on the “agile sweet spot” performed by Kruchten [Kru04, Kru10] (see chapter 5.4). Apart

from the factor of safety-criticality, the defined circumstances for the SAAPM are more or

less within this agile sweet spot. Kruchten’s advice is therefore the adaptation to exactly

these contexts.

“[…] we found valuable to first define the context using our model with several

factors, then understand in which dimension(s) the project felt outside of an ideal

agile sweet spot, and then in turn drive the adoption and possible adaptation of agile

practices to this context […].”

Philippe Kruchten [Kru10]

9 Summary

79

9 Summary

This thesis deals with the question of whether agile methodologies can be used in safety-

critical software development projects as well as in non-safety-critical projects. This

question is of importance because of the paradigm change in safety-critical industries

whereby regularly changing customer requirements and similar challenges have become

daily business. Many organisations in other industries dealing with software development

are trying to adopt agile methodologies in order to overcome these existing and upcoming

challenges. The central question is whether organisations within the safety-critical

industries can leverage on agile approaches as well.

To answer the question in the context of safety, the standard specification EUROCAE

ED-153 was chosen in order to determine the activities necessary for ensuring software

safety. In order not to reinvent the wheel, the objectives raised by ED-153 were mapped

to the integrated process model ISaPro®, which is a generic process model that is tailored

to meet the particular needs of safety-critical developments. An interesting fact is that the

majority of the objectives of ED-153 do not map to the safety lifecycle of ISaPro®. In fact,

these objectives map to processes of all lifecycles, which indicates that the assurance of

safety is not the task of the safety expert only. Safety assurance is a team approach,

where all interdisciplinary team members have to collaborate in order to develop safe

software.

After the necessary activities have been identified, the principles of agility and safety are

evaluated. This evaluation facilitates the comparison of the two approaches in order to

determine potential sources of synergy and conflict. A large number of synergies indicate

that the approaches have more substantial similarities in their attitudes than supposed. In

contrast to these positive indicators, there are of course many conflicts between agility

and safety as well. Particularly the whole agile manifesto seems to be a conflict in itself,

as it values each principle of safety less than the paired one. On closer examination the

conflicts turn out to be there, but at least the majority of them can be overcome by

tailoring or adapting an agile approach.

Based on the results of the first two steps – the mapping process and the evaluation of

the principles – an agile procedure model is created in the last stage. It combines safety

and agile values in a holistic approach, while leaving space for the activities that have to

be conducted in order to ensure software safety. This agile procedure model consists of

four phases that are tailored to the demands of safety assurance. While the focus of the

first phase (the pre-game phase) is on the efficient development of an initial concept

including a vision, a high-level system architecture and a first safety analysis, the second

phase (the iteration-driven phase) comprises the agile sprints. In order to compensate for

the lack of upfront design, the software architecture and safety analyses are evolved over

time during these iterations. To give the software architect and the safety engineer the

ability to steer development in the right direction, architectural and safety-related tasks

are performed one iteration ahead. In addition, every iteration includes an evaluation of

the previous iteration as well in order to ensure proper design and implementation,

considering all safety aspects and issues. To satisfy the needs of independent verification

9 Summary

80

and validation and/or actual certification by an external party, the last two phases handle

the deployment of the software into a test or an operational environment.

Due to the fact that such a generic agile procedure model does not fit for any

development project, preconditions and constraints for the optimum applicability were

defined. Projects within these constraints are new software systems, developed from

scratch by a maximum of three agile teams in a moderately safety-critical environment. In

addition it is important that the agile principles and practices are already adopted by the

organisation in order to avoid organisational trade-offs.

In order to determine compliance with EUROCAE ED-153, all required activities were

mapped to the different phases of the agile procedure model SAAPM. Although this

mapping is possible, conducting those activities moderately inflates the agile procedure

model, depending on the selected SWAL. Therefore it is important that the initial

workshop in the pre-game phase is leveraged in such a way that all team members

facilitate a lightweight and efficient building of a solid base. This helps in pushing forward

the shared vision of creating valuable software under personal responsibility. While

having ensured that the agile procedure model fits to safety-related requirements, the

model was evaluated in the context of agility as well. The procedure model still values the

left principles of the agile manifesto more than those on the right, although it keeps more

focus on the principles on the right than other agile approaches.

The aim of this developed agile procedure model is to facilitate the adoption of agile

methodologies in the area of safety-critical software development. As it ensures software

safety in parallel with following agile values and principles, the model is suitable for this

particular environment. Therefore a further research topic could be an empirical study

based on this or a similar agile procedure model. Such a model could be assessed by a

comparison to the application of a sequential or plan-driven approach in order to

determine which approach is more efficient in developing safety-critical software systems.

Another research topic could be the further integration of the agile methods into the

integrated safety process model ISaPro®. Such an integration could help to incorporate

the advantages of agility in the development process of safety-critical systems in a

structured way.

“There are two primary choices in life: to accept conditions as they exist, or accept

the responsibility for changing them.”

Denis Waitley

Glossary

81

Glossary

Air navigation services Umbrella term for air traffic management, communication,

navigation services, and meteorological services for air navigation and aeronautical

information services [EC05].

Air traffic management Approach with the objective of enabling aircraft operators to

meet their planned time schedules without compromising an agreed level of safety

[EC05].

Availability “The ability of an item (under combined aspects of its reliability,

maintainability and maintenance support) to perform its required function at a stated

instant of time or over a stated period of time” [BS87].

Certification Process performed by an independent authority that approves a system

according to the fulfilment of a standard specification.

Code coverage “[…] a measurement of how thoroughly the automated tests exercise

the production code and its source code statements, branches, and expressions” [Kos07].

Commercial Off The Shelf (COTS) Any item of supply that is a commercial item sold

in substantial quantities in the commercial marketplace [OFR10].

Dependability “Trustworthiness of a system such that reliance can justifiably be placed

on the service it delivers” [Lap92].

Independence There are varying degrees of independence. This degree “[…] may

range from the same person or different person in the same organisation to a person in a

different organisation with varying degrees of separation” [EUROCAE09].

Lifecycle process Refers to the processes that are needed over the whole lifetime of a

system or product along the value chain. These processes start in the planning phase of

the development and end with the disposal after the system or product is in operation.

Magic project triangle “In traditional project management, the objects of consideration

of project management are the scope, the schedule, and the costs. The relationships

among these objects of consideration are [called] the magic triangle” [CG06].

Maintainability “The ability of an item, under stated conditions of use, to be retained in,

or restored to, a state in which it can perform its required functions, when maintenance is

Glossary

82

performed under stated conditions and using prescribed procedures and resources”

[BS87].

Product backlog “[…] is a prioritized list of features to be added to a [software]

product. Unlike a traditional requirements document, a product backlog is highly dynamic;

items are added, removed, and reprioritized each iteration as more is learned about the

product, the users, the team, and so on” [Coh09].

Reliability “The ability of an item to perform a required function, under given

environmental and operational conditions and for a stated period of time” [ISO95].

Safety argument “[…] is used to demonstrate how someone can reasonably conclude

that a system is acceptably safe from the evidence available” [KW04].

Safety assurance “All planned and systematic actions necessary to afford adequate

confidence that a product, a service, an organisation or a functional system achieves

acceptable or tolerable safety” [EU05].

Safety requirement “A risk-mitigation means, defined from the risk-mitigation strategy

that achieves a particular safety objective, including organisational, operational,

procedural, functional, performance, and interoperability requirements or environment

characteristics” [EUROCAE09].

Software complexity “[…] refers to the extent to which a system is difficult to

comprehend, modify and test, not to the complexity of the task which the system is meant

to perform; two systems equivalent in functionality can differ greatly in their software

complexity” [BDZ89].

Software component “The result of the first level of decomposition of the software

architecture, so that requirements, actions, objects, input and output flows can be

associated to that software component” [EUROCAE09]. Furthermore a software

component “[…] can be seen as a building block that can be fitted or connected together

with other reusable blocks of software to combine and create a custom software

application” [EUROCAE09].

Stakeholders In terms of a software system, stakeholders may be users, customers,

suppliers, developers, businesses [HJD10] or anybody who is interested in the result of

the software development process.

System “A collection of entities (elements, components, models, and so forth) that are

organised for a common purpose” [CBB+10].

Glossary

83

System interface “A boundary across which two systems or elements [depending on

the type of interface] meet and interact or communicate with each other” [CBB+10].

System/software architecture Denotes the high level structure of a system [CBB+10].

For the purposes of this thesis, architecture is seen as the output of the design process.

System/software design “Activities [...] for determining the structure of a specific

information system that fulfils the system requirements” [Bur10].

Technical concept Provides a rough system design, based on the available

information supplied by the customer or the project owner. It depicts the technical

realisation, which is a mixture of the customers’ needs and their technical solutions.

[TSS12]

Traceability In software development this term refers to the “[…] ability to link system

or product requirements back to stakeholders’ rationales and forward to corresponding

design artefacts, code, and test cases” [Goe11].

Unit test “A test that verifies the behaviour of some small part of the overall system.

What turns a test into a unit test is that the system under test is a very small subset of the

overall system and may be unrecognizable to someone who is not involved in building the

software” [Mes07].

Upfront design This term refers to the procedure of specifying all requirements and the

complete design of a system based on the requirements before starting the

implementation. This is usually intended by traditional system development approaches

(see chapter 5.5.1).

Validation “Confirmation by examination and provision of objective evidence that the

particular requirements for a specific intended use are fulfilled” [EC01].

Verification “Confirmation by examination of evidence that a product, process or

service fulfils specified requirements” [EC10].

Work product Describes any artefact that is produced by a process. These artefacts

can include files, documents, parts of the product, services, processes and specifications.

[CMMI10]

Bibliography

84

Bibliography

[AFSA00] Air Force Safety Agency (Kirtland Air Force Base, New Mexico): Air Force System

Safety Handbook, 2000.

[AgiAll12] Agile Alliance: The Alliance. 2012. http://www.agilealliance.org/the-alliance/

[Accessed on 3
rd

 January 2013].

[AL12] Ambler, S.; Lines, M.: Disciplined Agile Delivery: A Practitioner’s Guide to Agile

Software Delivery in the Enterprise. Boston: IBM Press, 2012.

[ALR00] Avizienis, A.; Laprie, J.-C.; Randell, B.: Fundamental Concepts of Dependability.

Proceedings of 3
rd

 IEEE Information Survivability Workshop (ISW-2000) (24
th
 –

26
th
 October 2000), Boston, Massachusetts, USA, p. 7 – 12, 2000.

[ALR
+
04] Avizienis, A.; Laprie, J.-C.; Randell, B.; Landwehr, C.: Basic Concepts and

Taxonomy of Dependable and Secure Computing. IEEE Transactions on

Dependable and Secure Computing, Vol. 1, Issue 1, 2004.

[And10] Anderson, D.J.: Kanban: Successful Evolutionary Change for your Technology

Business. Washington: Blue Hole Press, 2010.

[BA04] Beck, K.; Andres, C.: Extreme Programming Explained: Embrace Change (2
nd

edition). Boston: Addison-Wesley Professional, 2004.

[BDZ89] Banker, R.D.; Datar, S.M.; Zweig, D.: Software Complexity and Maintainability.

Proceedings of the 10
th
 International Conference on Information (ICIS), Boston,

USA, p. 247 – 255, 1989.

[BHI
+
05] Bozheva, T.; Hulkko, H.; Ihme, T.; Jartti, J.; Salo, O.; Van Baelen, S.; Wils, A.:

Agile in Embedded Software Development: State-of-the-Art Review in Literature in

Practice. Agile ITEA Consortium, Agile Deliverable D.1, Version 1.0 (2005.04.08),

2005.

[BN07] Begel, A.; Nagappan, N.: Usage and Perceptions of Agile Software Development

in an Industrial Context: An Exploratory Study. Proceedings of the 1
st
 International

Symposium on Empirical Software Engineering and Measurement (ESEM) (20
th
 –

21
st
 September 2007), Madrid, Spain, p. 255 – 264, 2007.

[Boe79] Boehm, B.: Guidelines for Verifying and Validating Software Requirements and

Design Specifications. Proceedings of the European Conference on Applied

Information Technology of the International Federation for Information Processing

(EURO IFIP) 1979 (25
th
 – 28

th
 September 1979), London, UK, p. 711 – 719, 1979.

[Boe02] Boehm, B.: Get Ready for Agile Methods, with Care. IEEE Computer, Volume 35,

Issue 1, p. 64 – 69, 2002.

[Bro95] Brooks, F.P.: The Mystical Man-Month: Essays on Software Engineering (2
nd

edition). Boston: Addison-Wesley Professional, 1995.

[BS87] British Standards Institution: Quality Vocabulary – International Terms (BS 4778-

1:1987). 1987.

[BT05] Boehm, B.; Turner, R.: Management Challenges to Implementing Agile Processes

in Traditional Development Organizations. IEEE Software, Volume 22, Issue 5, p.

30 – 39, 2005.

[Bur10] Burd, S.D.: Systems Architecture (6
th
 edition). Boston: Course Technology, 2010.

Bibliography

85

[BV10] Bozzano, M.; Villafiorita, A.: Design and Safety Assessment of Critical Systems.

Florida, Taylor & Francis, 2010.

[CB11] Chhillar, U.; Bhasin, S.: Establishing Relationship between Complexity and Faults

for Object-Oriented Software Systems. International Journal of Computer Science

Issues (IJCSI), Vol. 8, Issue 5, No. 2, 2011.

[CBB
+
10] Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Merson, P.;

Nord, R.; Stafford, J.: Documenting Software Architecture – Views and Beyond

(2
nd

 edition). Boston: Addison-Wesley Professional, 2010.

[CF03] Cohn, M.; Ford, D.: Introducing an Agile Process to an Organization. IEEE

Computer, Volume 36, Issue 6, p. 74 – 78, 2003.

[CG06] Cleland, D.; Gareis, R.: Global Project Management Handbook: Planning,

Organizing, and Controlling International Projects (2
nd

 edition). New York:

McGraw-Hill Professional, 2006.

[Che09] Chenu, E.: Agility and Lean for Avionics. Lean, Agile Approach to High-Integrity

Software Conference (26
th
 March 2009), Paris, France, 2009

http://manu40k.free.fr/AgilityAndLeanForAvionics1.pdf [Accessed on 24
th
 April

2013].

[CLD99] Coad, P.; de Luca, J.; Lefebvre, E.: Java Modeling in Color with UML: Enterprise

Components and Processes. New Jersey: Prentice Hall, 1999.

[CMMI10] Software Engineering Institute (SEI): CMMI
®
 for Development, Version 1.3 (CMMI-

DEV, V1.3), 2010.

[Coc00] Cockburn, A.: Balancing Lightness with Sufficiency. Cutter IT Journal, Volume 13,

Issue 11, p. 26 – 33, 2000.

[Coc06] Cockburn, A.: Agile Software Development: The Cooperative Game (2
nd

 edition).

Boston: Addison-Wesley Professional, 2006.

[Coh04] Cohn, M.: User Stories Applied: For Agile Software Development. Boston:

Addison-Wesley Professional, 2004.

[Coh08] Cohn, M.: Non-functional Requirements as User Stories. 2008.

http://www.mountaingoatsoftware.com/blog/non-functional-requirements-as-user-

stories [Accessed on 10
th
 February 2013].

[Coh09] Cohn, M.: Succeeding with Agile: Software Development Using Scrum (2
nd

edition). Boston: Addison-Wesley Professional, 2009.

[Coo08] Cooper, R.G.: The Stage-Gate Idea-to-Launch Process – Update, What’s New

and NexGen Systems. Product Innovation Management Journal, Volume 25,

Issue 3, p. 213 – 232, 2008.

[Cro79] Crosby, P.B.: Quality is Free: The Art of Making Quality Certain. New York:

McGraw-Hill Professional, 1979.

[Cun01] Cunningham, W.: Manifesto for Agile Software Development. 2001.

http://www.agilemanifesto.org/ [Accessed on 3
rd

 January 2013].

[DAS
+
07] Dyba, T.; Arisholm, E.; Sjoberg, D.I.K.; Hannay, J.E.; Shull, F.: Are Two Heads

Better than One? On the Effectiveness of Pair Programming. IEEE Software,

Volume 24, Issue 6, p. 12 – 15, 2007.

Bibliography

86

[Dav09] Davies, R.: Non-Functional Requirements: Do User Stories Really Help?

DevOpsDays ’09 (30
th

 – 31
st
 October 2009), Ghent, Belgium, 2009.

http://www.methodsandtools.com/archive/archive.php?id=113 [Accessed on 10
th

February 2013].

[Dem82] Deming, W.E.: Out of the Crisis. Cambridge: Massachusetts Institute of

Technology, 1982.

[DMG07] Duvall, P.M.; Matyas, S.; Glover, A.: Continuous Integration: Improving Software

Quality and Reducing Risk. Boston: Addison-Wesley Professional, 2007.

[DoD12] Department of Defense: Standard Practice – System Safety (MIL-STD-882E).

2012.

[Dvo09] Dvorak, D.L.: NASA Study on Flight Software Complexity. Final Report (5
th
 March

2009), 2009.

[EC01] EUROCONTROL: EUROCONTROL Safety Regulatory Requirements (ESARR 4)

– Risk Assessment and Mitigation in ATM. Edition 1.0 (5
th
 April 2001), 2001.

[EC05] EUROCONTROL: EMOSIA (European Model for ATM Strategic Investment

Analysis): Air Navigation Service Provider Model (EMOSIA II/DOC/3.4). Version

5.1, March 2005, 2005.

[EC10] EUROCONTROL: EUROCONTROL Safety Regulatory Requirements (ESARR 6)

– Software in ATM Functional Systems. Edition 2.0 (6
th
 May 2010), 2010.

[Els07] Elssamadisy, A.: Patterns of Agile Practice Adoption: The Technical Cluster.

Toronto: C4Media, 2007.

[Eri05] Ericson II, C.A.: Hazard Analysis Techniques for System Safety. New Jersey: John

Wiley & Sons, 2005.

[EU04] European Union: Commission Regulation (EC) No 552/2004 of the European

Parliament and of the Council of 10 March 2004 on the interoperability of the

European Air Traffic Management network (the interoperability Regulation). Official

Journal of the European Union, 2004.

[EU05] European Union: Commission Regulation (EC) No 2096/2005 of 20 December

2005 laying down common requirements for the provision of air navigation

services. Official Journal of the European Union, 2005.

[EU08] European Union: Commission Regulation (EC) No 482/2008 of 30 May 2008

establishing a software safety assurance system to be implemented by air

navigation service providers and amending Annex II to Regulation (EC) No

2096/2005. Official Journal of the European Union, 2008.

[EUROCAE09] The European Organisation for Civil Aviation Equipment: Guideline for ANS

Software Safety Assurance (ED-153). 2009.

[FAA93] Federal Aviation Administration (U.S. Department of Transportation): Advisory

Circular: RTCA, Inc., Document RTCA/DO-178B. 1993.

[FBB
+
99] Fowler, M.; Beck, K.; Brant, J.; Opdyke, W.; Don Roberts: Refactoring: Improving

the Design of Existing Code. Amsterdam: Addison-Wesley Longman, 1999.

[FHL
+
98] Frankl, P.G.; Hamlet, R.G.; Littlewood, B.; Strigini, L.: Evaluating Testing Methods

by Delivered Reliability. IEEE Transactions on Software Engineering Journal,

Volume 24, Issue 8, p. 586 – 601, 1998.

Bibliography

87

[Fir05] Firesmith, D.: Engineering Safety-Related Requirements for Software-Intensive

Systems (Tutorial T3). 13
th
 IEEE International Requirements Engineering

Conference (29
th
 August – 2

nd
 September 2005), Paris, France, 2005.

[Fra08] Franklin, T.: Adventures in Agile Contracting: Evolving from Time and Materials to

Fixed Price, Fixed Scope Contracts. Agile Conference 2008 (4
th
 – 8

th
 August

2008), Toronto, Canada, p. 269 – 273, 2008.

[FRO03] Fitzgerald, B.; Russo, N.L.; O’Kane, T.: Software Development Method Tailoring at

Motorola. Communications of the ACM Magazine, Volume 46, Issue 4, p. 64 – 70,

2003.

[Gar06] Gareis, R.: Happy Projects! Vienna: MANZ Verlag, 2006.

[Gar09] Garg, A.: Agile Software Development. DRDO Science Spectrum, March 2009, p.

55 – 59, 2009.

[Gar12] Gartshore, R.: Software Development for Safety-Critical Environments – How safe

are you? Programming Research Webinar (23
rd

 August 2012). 2012.

[GBL
+
04] Grossman F.; Bergin, J.; Leip, D.; Merritt, S.; Gotel, O.: One XP Experience:

Introducing Agile (XP) Software Development into a Culture that is Willing but not

Ready. Proceedings of 2004 Conference of the Centre for Advanced Studies on

Collaborative Research (CASCON) (5
th
 – 7

th
 October 2004), Markham, Ontario,

Canada, p. 242 – 254, 2004.

[GH12] Guo, Z.; Hirschmann, C.: An Integrated Process for Developing Safety-critical

Systems using Agile Development Methods. 7
th
 International Conference on

Software Engineering Advances (ICSEA) (18
th
 – 23

rd
 November 2012), Lisbon,

Portugal, p. 647 – 649, 2012.

[GM03] Gross, M.; McInnes, K.R.: Kanban Made Simple: Demystifying and Applying

Toyota’s Legendary Manufactoring Process. New York: AMACOM, 2003.

[Goe11] Göknil, A.: Traceability of Requirements and Software Architecture for Change

Management. Doctoral Dissertation, Centre for Telematics and Information

Technology (CTIT), University of Twente, Netherlands, 2011.

[GPM10] Ge, X.; Paige, R.F.; McDermid, J.A.: An Iterative Approach for Development of

Safety-Critical Software and Safety Arguments. Agile Conference 2010 (9
th
 – 13

th

August 2010), Orlando, Florida, p. 35 – 43, 2010.

[Han11] Hansen, C.B.K.: Agile on Huge Banking Mainframe Legacy Systems. Is it

possible? EuroSTAR 2011 Conference (21
st
 - 24

th
 November 2011), Manchester,

UK, 2011.

[Hei07] Heimdahl, M.P.E.: Safety and Software Intensive Systems: Challenges Old and

New. Future of Software Engineering (FOSE) (23
rd

 – 25
th
 May 2007), Minneapolis,

USA, p. 137 – 152, 2007.

[Hig02] Highsmith, J.: Agile Software Development Ecosystems. Boston: Addison-Wesley

Professional, 2002.

[Hir05] Hirsch, M.: Moving from a Plan Driven Culture to Agile Development. Proceedings

of 27
th
 International Conference on Software Engineering (ICSE) (15

th
 – 21

st
 May

2005), St. Louis, Missouri, USA, 2005.

[HJD10] Hull, E.; Jackson, K.; Dick, J.: Requirements Engineering (3
rd

 edition). London:

Springer Media, 2010.

Bibliography

88

[HKN
+
10] Hoda, R.; Kruchten, P.; Noble, J.; Marshall, S.: Agility in Context. Proceedings of

the ACM International Conference on Object Oriented Programming Systems

Languages and Applications (OOPSLA) (17
th
 – 21

st
 October 2010), Nevada, USA,

p. 74 – 88, New York: ACM, 2010.

[HNM09] Hoda, R.; Noble, J.; Marshall, S.: Negotiating Contracts for Agile Projects: A

Practical Perspective. 10
th
 International XP Conference (25

th
 – 29

th
 May 2009),

Sardinia, Italy, p. 186 – 191, 2009.

[Hol06] Holler, R.: Debunking Myths of Agile Development. Better Software Magazine,

May 2006, 2006.

[HSV
+
12] Haberl, P.; Spillner, A.; Vosseberg, K.; Winter, M.: Umfrage 2011: Softwaretest in

der Praxis. Heidelberg: dpunkt Verlag, 2012.

[Hug09] Hugos, M.H.: Business Agility: Sustainable Prosperity in a Relentlessly

Competitive World. New Jersey: John Wiley & Sons, 2009.

[Hya03] Hyatt, N.: Guidelines for Process Hazards Analysis, Hazards Identification & Risk

Analysis (1
st
 edition). Ontario: Dyadem Press, 2003.

[ICAO12] International Civil Aviation Organization (ICAO): 2013 – 2028: Global Air

Navigation Capacity & Efficiency Plan (Doc 9750, Draft). 12
th
 Air Navigation

Conference (19
th
 – 30

th
 November 2012), Montréal, Canada, 2012.

[IEC10] IEC International Electronic Commission: IEC 61508, Functional Safety of

electric/electronic/programmable electronic safety-related systems, Part 1-7

(International Standard). Geneva, Switzerland, 2010.

[Ima86] Imai, M.: Kaizen: The Key To Japan’s Competitive Success. New York: McGraw-

Hill/Irwin, 1986.

[IPMA06] IPMA (International Project Management Association): ICB – IPMA Competence

Baseline Version 3.0. 2006.

[ISO95] International Organisation for Standardisation (ISO): Quality Management and

Quality Assurance – Vocabulary (ISO 8402:1995). 1995.

[Joh03] Johnston, A.: The Role of the Agile Architect. 2003.

http://www.agilearchitect.org/agile/role.htm [Accessed 9th February 2013].

[Kel98] Kelly, T.P.: Arguing Safety – A Systematic Approach to Managing Safety Cases.

Doctoral Dissertation, Department of Computer Science, University of York, United

Kingdom, 1998.

[Kin11] King, R.S.: The Top 10 Programming Languages. Online article in IEEE Spectrum

(October 2011), 2011. http://spectrum.ieee.org/at-work/tech-careers/the-top-10-

programming-languages [Accessed 13
th
 December 2012].

[Kni02] Knight, J.C.: Safety Critical Systems: Challenges and Directions. Proceedings of

the 24
rd

 International Conference on Software Engineering (ICSE) (25
th
 May

2002), p. 547 – 550, 2002.

[Kom12] Komus, A.: Ergebnisbericht (Langfassung) – Studie: Status Quo Agile Verbreitung

und Nutzen agiler Methoden. BPM-Labor Hochschule Koblenz, Version 1.11 (Juli

2012), 2012.

[Kos07] Koskela, L.: Test Driven: Practical TDD and Acceptance TDD for Java Developers.

Greenwich: Manning Publications, 2007.

Bibliography

89

[Kru04] Kruchten, P.: Scaling Down Projects to meet the Agile Sweet Spot. IBM

developerWorks, Volume 13, August 2004, 2004.

[Kru10] Kruchten, P.: Contextualizing Agile Software Development. 17
th
 EuroSPI²

Conference (1
st
 – 3

rd
 September 2010), Grenoble, France, 2010.

[KST
+
84] Kano, N.; Seraku, N.; Takahashi, F.; Tsuji, S.: Attractive Quality and Must-be

Quality. The Journal of the Japanese Society for Quality Control, Volume 14, Issue

2, p. 39 – 48, 1984.

[KW04] Kelly, T.; Weaver, R.: The Goal Structuring Notation – A Safety Argument

Notation. Proceedings of the International Conference on Dependable Systems

and Networks – Workshops on Assurance Cases (28
th
 June – 1

st
 July 2004),

Florence, Italy, 2004.

[Lac12a] Lacey, M.: The Scrum Field Guide: Practical Advice for your First Year.

Amsterdam: Addison-Wesley Longman, 2012.

[Lac12b] Lacey, M.: Scrum – The Sprint Cycle. 2012. http://www.mitchlacey.com/intro-to-

agile/scrum/the-sprint-cycle [Accessed on 5
th
 January 2013].

[Lad09] Ladas, C.: Scrumban – Essays on Kanban Systems for Lean Software

Development. Seattle: Modus Cooperandi Press, 2009.

[Lap92] Laprie, J.-C.: Dependability: A Unifying Concept for Reliable, Safe, Secure

Computing. Proceedings of the IFIP 12
th
 World Computer Congress on Algorithms,

Software, Architecture-Information Processing (7
th
 – 11

th
 September), Madrid,

Spain, p. 585 – 593, Amsterdam: North-Holland Publishing, 1992.

[LBB
+
02] Lindvall, M.; Basili, V.; Boehm, B.; Costa, P.; Dangle, K.; Shull, F.; Tesoriero, R.;

Williams, L.; Zelkowitz, M.: Empirical Findings in Agile Methods. Proceedings of

the 2
nd

 XP Universe and 1
st
 Agile Universe Conference on Extreme Programming

and Agile Methods (4
th
 – 7

th
 August 2002), Chicago, USA, p. 197 – 207, London:

Springer, 2002.

[LCF13] Larrucea, X.; Combelles, A.; Favaro, J.: Safety-Critical Software. IEEE Software,

Volume 30, Issue 3, p. 25 – 27, 2013.

[Lev11] Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety.

Cambridge: The MIT Press, 2011.

[LT93] Leveson, N.; Turner, C.S.: An Investigation of the Therac-25 Accidents. IEEE

Computer Journal, Vol. 26, Issue 7, p. 18 – 41, 1993.

[Mac03] MacCormack, A.: Agile Software Development: Evidence from the Field. Agile

Development Conference (25
th
 – 28

th
 June 2003), Salt Lake City, USA, 2003.

[Mah08] Mah, M.: How Agile Projects Measure Up, and what this means to you. Cutter

Consortium Agile Product & Project Management, Vol. 9, No. 9, 2008.

[Mar08] Martin, R.C.: Clean Code: A Handbook of Agile Software Craftsmanship. Boston:

Prentice Hall, 2008.

[Mes07] Meszaros, G.: xUnit Test Patterns – Refactoring Test Code. Amsterdam: Addison-

Wesley Longman, 2007.

[MTL10] MTL Instruments: Availability, Reliability, SIL – What’s the difference? 2010.

http://www.mtl-inst.com/images/uploads/datasheets/App_Notes/AN9030.pdf

[Accessed on 30
th
 March 2013].

Bibliography

90

[NASA04] National Aeronautics and Space Administration (NASA). NASA Software Safety

Guidebook (NASA Technical Standard: NASA-GB-8719.13). 2004.

[NMM05] Nerur, S.; Mahapatra, R.; Mangalaraj, G.: Challenges of Migrating to Agile

Methodologies. Communications of the ACM Magazine, Volume 48, Issue 5, p. 72

– 78, 2005.

[OFR10] Office of the Federal Register (OFR) – National Archives and Records

Administration: Federal Acquisition Regulations System (Title 48 of the United

States Code of Federal Regulations). Volume 1, Chapter 1, 2010.

[PM02] Poppendieck, M.; Morsicato, R.: XP in a Safety-critical Environment. Cutter IT

Journal, Volume 15, Issue 9, p. 12 – 16, 2002.

[PW09] Petersen, K.; Wohlin, C.: A Comparison of Issues and Advantages in Agile and

Incremental Development between State of the Art and an Industrial Case. Journal

of Systems and Software, Volume 82, Issue 9, p. 1479 – 1490, 2009.

[RCC99] Redmill, F.; Chudleigh, M.: Catmur, J.: System Safety: HAZOP and Software

HAZOP. New Jersey: John Wiley & Sons, 1999.

[Ric08] Rico, D.F.: What is the ROI of Agile vs. Traditional Methods? An analysis of XP,

TDD, Pair Programming, and Scrum (Using Real Options). TickIT International

Journal, Issue 4Q08, 2008.

[Ric12] Richards, M.: FDD: Doing Agile in a Non-Agile World. ÜberConf 2012 (19
th
 – 22

nd

June 2012), Westminster, USA, 2012.

[Roy70] Royce, W.W.: Managing the Development of Large Software Systems.

Proceedings of IEEE Wescon (1
st
 – 6

th
 August 1970), p. 382 – 338, 1970.

[RSSB93] Rail Safety and Standards Board: Group Standard GM//TT0040 – Safety of

People Working on Traction and Rolling Stock (Issue 2, Revision A). 1993.

[Sch97] Schwaber, K.: Scrum Development Process. OOPSLA Business Object Design

and Implementation Workshop, London: Springer, 1997.

[Sch04] Schwaber, K.: Agile Project Management with Scrum. Redmond: Microsoft Press,

2004.

[Sch11] Schermerhorn, J.R.: Exploring Management (3
rd

 edition). New Jersey: John Wiley

& Sons, 2011.

[ScrAll12] Scrum Alliance: What is Scrum? 2012.

http://scrumalliance.org/pages/what_is_scrum [Accessed on 5
th
 January 2013].

[Sho04] Shore, J.: Fail Fast. IEEE Software, Volume 21, Issue 5, p. 21 – 25, 2004.

[Sli06] Sliger, M.: Bridging the Gap: Agile Projects in the Waterfall Enterprise. Better

Software Journal, July/August 2006, p. 26 – 31, 2006.

[SP04] Stevenson, C.; Pols, A.: An Agile Approach to a Legacy System. Extreme

Programming and Agile Processes in Software Engineering – Proceedings of 5
th

International XP Conference (6
th
 – 10

th
 June 2004), Garmisch-Partenkirchen,

Germany, p. 123 – 129, 2004.

[SS04] Smith, D.J.; Simpson, K.G.L.: Functional Safety: A straightforward Guide to

applying IEC 61508 and related Standards (2
nd

 edition). Oxford: Elsevier

Butterworth-Heinemann, 2004.

Bibliography

91

[Sta11] Starke, G.: Effektive Softwarearchitekturen: Ein praktischer Leitfaden (5. Auflage).

Munich: Carl Hanser Verlag, 2011.

[Sto96] Storey, N.R.: Safety-critical Computer Systems. New York: Addison-Wesley

Longman, 1996.

[SW01] Schneider, G.; Winters, J.P.: Applying Use Cases: A Practical Guide (2
nd

 edition).

Boston: Addison-Wesley Professional, 2001.

[SW08] Schedl, G.; Winkelbauer, W.: Practical Ways of Improving Product Safety in

Industry. Proceedings of the 16
th
 Safety-critical Systems Symposium (5

th
 – 7

th

February 2008), Bristol, UK, p. 177 – 194, 2008.

[Sy07] Sy, D.: Adapting Usability Investigations for Agile User-centered Design. Journal of

Usability Studies, Vol. 2, Issue 3, p. 112 – 132, 2007.

[TKH12] Tschürtz, H.; Krebs, P.; Hettlinger, L.: ISaPro
®
: A Process Model for Safety

Applications. 19
th
 EuroSPI² Conference (25

th
 – 27

th
 June 2012), Vienna, Austria,

2012.

[TS10] Tschürtz, H., Schedl, G.: An Integrated Project Management Life Cycle Supporting

System Safety. Proceedings of the 18
th
 Safety-Critical Systems Symposium (9 –

11
th
 February 2010), Bristol, UK, p. 71 – 84, 2010.

[TSS12] Tschürtz, H., Sebron, W., Schauer, W.: Integrativer Safety Process (ISaPro
®
).

Vienna Institute for Safety & Systems Engineering, Version 2.2 (16.02.2012),

2012.

[VB09] VanderLeest, S.H.; Buter, A.: Escape the Waterfall: Agile for Aerospace. 28
th

Digital Avionics Systems Conference (DASC) (23
rd

 – 29
th
 October 2009), Orlando,

Florida, USA, p. 6.D.3-1 – 6.D.3-16, 2009.

[VerOne13] VersionOne: State of Agile Survey 2012 (7
th
 Annual). 2013.

http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf

[Accessed on 13
th
 April 2013].

[Vin06] Vincoli, J.W.: Basic Guide to System Safety (2
nd

 edition). New Jersey: John Wiley

& Sons, 2006.

[Vuo11] Vuori, M.: Agile Development of Safety-Critical Software. Tempere University of

Technology, Department of Software Systems, Report 14, 2009.

[Wal04] Wallmüller, E.: Risikomanagement für IT- und Software-Projekte: Ein Leitfaden für

die Umsetzung. Munich: Hanser Verlag, 2004.

[WB10] Wolf, H.; Bleek, W.-G.: Agile Softwareentwicklung: Werte, Konzepte und

Methoden (2. Auflage). Heidelberg: dpunkt Verlag, 2010.

[Wel02] Welch, N.T.: What is System Safety? System Safety: A Science and Technology

Primer by The New England Chapter of the System Safety Society (Revision A),

2002.

[Wes12] West, D.: Lean ALM – Managing Flow rather than Disciplines. EclipseCon 2012

Conference (26
th
 – 29

th
 March 2012), Reston, Virginia, 2012.

[WKM97] Wilson, S.P.; Kelly, T.P.; McDermid, J.A.: Safety Case Development: Current

Practice, Future Prospects. 12
th
 Annual CSR Workshop on Safety and Reliability

of Software Based Systems (12
th
 – 15

th
 September 1995), Bruges, France, p. 135

– 156. London: Springer, 1997.

Bibliography

92

[WS07] Wisner, J.D.; Stanley, L.L.: Process Management: Creating Value Along the

Supply Chain. Ohio: Thomas South-Western, 2007.

[York11] University of York: GSN Community Standard Version 1 (November 2011). 2011.

[Zem08] Zemrowski, K.M.: Impacts of Increasing Reliance on Automation in Air Traffic

Control Systems. 2
nd

 Annual IEEE Systems Conference 2008 (7
th
 – 10

th
 April

2008), p. 1 – 6, 2008.

List of Figures

93

List of Figures

Figure 1: Research Method... 3

Figure 2: Dependability Attributes [based on ALR+04] ... 9

Figure 3: Relationship between Malfunctions or Failures, Hazards and Effects [based on

EUROCAE09] ... 10

Figure 4: Categories of Threats [ALR00] ... 12

Figure 5: Fundamental Chain of Threats [ALR00] ... 13

Figure 6: Safety Standard Families [based on Gar12, SW08] ... 16

Figure 7: Levels of Guidance provided by ED-153 [EUROCAE09] 20

Figure 8: Mapping of SWAL (ED-153) to SIL (IEC 61508) [EUROCAE09] 21

Figure 9: Adapted ISaPro® Framework [based on TKH12, TSS12] 26

Figure 10: Questions of the Different Safety Processes [based on TS10, TSS12] 29

Figure 11: Test-driven Development Cycle [Coh09] .. 37

Figure 12: Scrum Framework [Lac12b] ... 40

Figure 13: Waterfall Model [Roy70] ... 42

Figure 14: Cost of Change over Time using the Waterfall or Agile Procedure Models

[Els07] ... 42

Figure 15: V-Model [Boe79] .. 43

Figure 16: Stage-Gate® Approach [Coo08] ... 43

Figure 17: Combination of Waterfall-up-front and Waterfall-at-end [Wes12] 45

Figure 18: Objective Mapping Process ... 46

Figure 19: Different Positions on Initial Specification ... 50

Figure 20: Four Phases of the Agile Procedure Model SAAPM 60

Figure 21: High-level Design of System Architecture .. 64

Figure 22: Role Responsibilities .. 67

Figure 23: Interaction between Pre-game and Iteration-driven Phase 70

Figure 24: Interaction between Iteration-driven and Spin-off Phase 72

Figure 25: Interactions between Iteration-driven and Wrap-up Phase 73

Figure 26: Comparison of Activities required per SWAL in ISaPro® Lifecycles 73

Figure 27: Required Activities per Agile Procedure Model Phase 74

Figure 28: Distribution of ISaPro® Lifecycle Activities over Agile Procedure Model Phases

 .. 74

List of Tables

94

List of Tables

Table 1: Safety Integrity Levels (SIL) [IEC10] ... 12

Table 2: European Union Regulations partially satisfied by Guidance of ED-153 [EU04,

EU08] .. 19

Table 3: Allocation of SWAL Levels in accordance with Effect Likelihood and Severity

[EUROCAE09] .. 21

Table 4: Software Safety Assurance System Objectives [EUROCAE09]......................... 23

Table 5: Software Safety Assessment Process Responsibilities [EUROCAE09] 24

Table 6: Lifecycle Processes of ED-153.. 25

Table 7: Overview of Mappings within Integrated Process Lifecycle ISaPro® 48

Table 8: Safety versus Agile Principles ... 50

Table 9: Required Information per Safety Analysis Technique [based on RCC99, GPM10]

 .. 66

Table 10: Mapping of Software Safety Assurance System Objectives 100

Table 11: Mapping of Development Process Objectives ... 107

Table 12: Mapping of Supporting Processes Objectives ... 119

Table 13: Mapping of Management Process Objectives ... 121

Table 14: Analysis Results of Project Management Lifecycle .. 131

Table 15: Analysis Results of Safety Lifecycle .. 131

Table 16: Analysis Results of Engineering Lifecycle ... 131

Table 17: Analysis Results of Supporting Processes .. 132

Annex A: EUROCAE ED-153 Mapping Tables

95

Annex A: EUROCAE ED-153 Mapping Tables

This appendix includes detailed mapping of the EUROCAE ED-153 [EUROCAE09]

objectives to processes of the ISaPro® framework. For an overview of the objectives,

which are considered in the scope of the thesis, please see chapters 3.3 and 3.4. The

ISaPro® framework is described in detail in chapter 3.

Therefore each activity of the ED-153 objectives (which is a sub-objective) is mapped to

the most suitable process of the ISaPro®. At the end of each chapter, there will be a

compact summary from the perspective of the particular ISaPro® processes in the form of

tables. Apart from the mapping information, these tables might contain comments on why

the mapping was done and if the ISaPro® process therefore has to be extended. The

second case might be necessary if there was no activity within the ISaPro® framework

that fulfils this particular objective of ED-153.

The required detailed activities per each process, including those that were added

especially for ED-153, are available in Annex B.

Legend

Each objective of the EUROCAE ED-153 [EUROCAE09] standard is listed in the

following form:

Objective: [N°] [Name of Objective] [SWAL] [C/L]

Activities [EUROCAE09]: ISaPro
®
 Mapping:

[Activity N°] [Description of Activities] [ISaPro
®
 Process]

[N°] Number of the objective in EUROCAE ED-153 standard [EUROCAE09].

[SWAL] Objective has to be satisfied by listed and higher SWAL levels. If there is

more than one level listed, then each activity within the objective lists its

required SWAL level on its own. For further general information on

SWAL levels, see chapter 3.2.

[C/L] Indicates whether the software supplier has the lead for taking

responsibility [L] or must only contribute [C] (see chapter 3.3).

[Activity N°] Number of the activity, which is a sub item of an objective, in EUROCAE

ED-153 standard [EUROCAE09].

[Description

of Activities]

Description of each activity in EUROCAE ED-153 standard

[EUROCAE09].

[ISaPro®

Process]

Result of the analysis on how the achievable activity can be mapped on

a defined integrative process model, in that case, the ISaPro®. For

detailed information on the process model, including processes, see

chapter 4; for detailed information on activities per process, see Annex B.

Annex A: EUROCAE ED-153 Mapping Tables

96

Software Safety Assurance System

Software Safety Assessment Initiation

Objective: 3.1.1 System Description SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.1.1.1 The Software purpose shall be defined. Project Initialisation

3.1.1.2 Operational scenarios shall be defined (e.g. HMI). Project Initialisation

3.1.1.3
The Software and System functions and their relationships shall
be defined.

Concept

3.1.1.4 Software boundaries shall be defined (e.g. operational, time). Concept

3.1.1.5 Software external interfaces shall be described. Concept

Objective: 3.1.2 Operational Environment SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.1.2.1
The Software and its environment (physical, operational, control
functions, legislative etc) shall be described in sufficient detail to
enable the safety lifecycle tasks to be satisfactorily carried out.

Concept

Objective: 3.1.3 Regulatory Framework SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.1.3.1
Applicable safety regulatory objectives and requirements shall
be identified.

Concept

Objective: 3.1.4 Applicable Processes and Guidance SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.1.4.1
Processes and Guidance applicable to the Software Assurance
shall be agreed.

Project Planning

Objective: 3.1.5
Risk Assessment and Mitigation Process
Output

SWAL 4 C

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.1.5.1
The system level risk assessment and mitigation identification
shall be reassessed at the software level to ensure it is
consistent with the software architecture/design.

Software Safety
Design Analysis

Software Safety Assessment Planning

Objective: 3.2.1 Software Safety Assessment Approach SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.2.1.1
The overall approach for the Software Safety Assessment
across Software Lifecycle shall be defined.

Project Planning

Annex A: EUROCAE ED-153 Mapping Tables

97

Objective: 3.2.2 Software Safety Assessment Plan SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.2.2.1

A plan describing the software safety assessment steps shall be
produced (e.g. approach, relations between safety assessment
and software lifecycle, deliverables (content and date of
delivery), relations with software/system major milestones,
project risk management due to safety issues, responsibilities,
persons, organisations, risk classification scheme, safety
objectives definition approach, hazard identification methods,
safety assurance activities, schedule, resource).

Project Planning

Objective: 3.2.3 Software Safety Assessment Plan Review SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.2.3.1
The Software Safety Assessment plan shall be reviewed and
commented for approval by NSA.

Project Planning

Objective: 3.2.4
Software Safety Assessment Plan
Dissemination

SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.2.4.1
The Software Safety Assessment plan shall be disseminated to
the impacted parties.

Project Planning

Software Safety Requirements Specification

Objective: 3.3.1 Failure Identification SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.3.1.1
Potential failures shall be identified by considering various ways
Software can fail and by considering the sequence of events
that lead to the occurrence of the failure.

Software Safety
Requirements
Analysis

3.3.1.2
A list of single, consequential and common modes of failure
shall be drawn up.

Software Safety
Requirements
Analysis

Objective: 3.3.2 Failure Effects SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.3.2.1 The effects of failure occurrence shall be evaluated.
Software Safety
Requirements
Analysis

3.3.2.2

The hazards associated with software failure occurrences shall
be identified in order to further complete the list of hazards
initiated during Risk Assessment and Mitigation process (e.g.
FHA and further completed during PSSA).

Software Safety
Requirements
Analysis

Annex A: EUROCAE ED-153 Mapping Tables

98

Objective: 3.3.3 Assessment of Risk SWAL 4 C

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.3.3.1
The initial Risk Assessment and Mitigation process (e.g. FHA
and further completed during PSSA) shall be revisited based
upon the outcome of 3.3.1 and 3.3.2.

Software Safety
Requirements
Analysis

Objective: 3.3.4 Software Requirements Setting SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.3.4.1

Software Requirements shall be compliant with the Safety
Objectives to which the Software contributes and System Safety
Requirements.
Note: The definition of “compliant” has to be developed as part of
the argument sustaining the demonstration of this objective. This
definition should include the traceability with the above level of
requirements, the demonstration of the necessity, sufficiency,
appropriateness and relevance of the requirements to satisfy the
above level of requirements.

Software Safety
Requirements
Analysis

Software Safety Assessment Validation, Verification and Process Assurance

Objective: 3.4.1 Software Safety Assessment Validation SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.4.1.1
The Software Safety Assurance System shall provide an
approach to justify that Software Requirements are complete
and correct.

Software
Requirements
Engineering

Objective: 3.4.2 Software Safety Assessment Verification SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.4.2.1
The software Requirements shall be consistent with functions to
mitigate the effects of the hazard and the Safety Objective of
the hazards.

Software Safety
Requirements
Analysis

Objective: 3.4.3
Software Safety Assessment Process
Assurance

SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.4.3.1

The software Safety Assessment shall be performed
completely.
Note: In accordance with the approved SW safety plan, in
conformance with ANSP Safety Management System and in
compliance with applicable safety regulatory requirements.

Project-Controlling

Objective: 3.4.4 Software Safety Assurance SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.4.4.1
Demonstration and Assurance that SW requirements are
satisfied shall be provided.

Software Test

Annex A: EUROCAE ED-153 Mapping Tables

99

Software Safety Assessment Completion

Objective: 3.5.1
Document Software Safety Assessment
Process Results

SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.5.1.1
The Software Safety Assessment process results shall be
documented.

Quality Assurance

Objective: 3.5.2
Software Safety Assessment Documentation
Configuration Management

SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.5.2.1
Software Safety Assessment documentation shall be put under
configuration management.

Configuration
Management

Objective: 3.5.3
Software Safety Assessment Documentation
Dissemination

SWAL 4 L

Activities [EUROCAE09]: ISaPro
®
 Mapping:

3.5.3.1

Software Safety Assessment documentation shall be
disseminated to impacted parties.
Note: This document does not presume who the impacted parties
are. They are defined in accordance with the approved SW safety
plan, in conformance with ANSP Safety Management System and
in compliance with applicable safety regulatory requirements.

Quality Assurance

Summary

Table 10 shows the compacted results of the mapping process for the objectives of the

software safety assurance system. The table contains only those ISaPro® processes,

which have at least a single mapping to one of the safety assurance system objectives.

ISaPro
®
 Processes

[TSS12]
ED-153 Objective N°

[EUROCAE09]
Comments

Project Management Lifecycle

Project Initialisation 3.1.1

Project Planning
3.1.4, 3.2.1, 3.2.2,
3.2.3, 3.2.4

3.2.1 / 3.2.2 / 3.2.3 / 3.2.4:
Assumption that safety planning is part of the
project planning process. It will be necessary to
involve safety experts (e.g. safety engineer).

Project Controlling 3.4.3
3.4.3:
Particular attention on complete performance of
software safety assessment.

Safety Lifecycle

Software Safety
Requirements Analysis

3.3.1, 3.3.2, 3.3.3,
3.3.4, 3.4.2

3.3.1 / 3.3.2:
Strong focus on software failures, therefore
mapped to software safety process.
3.3.3:
Added activity for updating initial risk assessment
and mitigation process.

Software Safety Design
Analysis

3.1.5 3.1.5:
Added activity for ensuring consistency to PSSE.

Annex A: EUROCAE ED-153 Mapping Tables

100

Engineering Lifecycle

Concept 3.1.1, 3.1.2, 3.1.3

Software Requirements
Engineering

3.4.1

Software Test 3.4.4

Support Processes

Configuration
Management

3.5.2

Quality Assurance 3.5.1, 3.5.3

3.5.1 / 3.5.3:
Assumption that the documentation of the
software safety assurance results and their
dissemination are part of the quality assurance
process. Therefore own independent activities
are created.

Table 10: Mapping of Software Safety Assurance System Objectives

Primary Lifecycle Processes

Development Process

Objective: 4.3.1 System Requirements Analysis SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.1.1

The system requirements specification shall describe, as a
minimum:

 functions and capabilities of the system;

 business/performance, organisational and user
requirements;

 safety, security, human-factors engineering (ergonomics),
interface, operations, and maintenance requirements;
design constraints and validation requirements.

Requirements
Engineering

Objective: 4.3.2 System Architectural Design SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.2.1
System requirements shall be allocated among hardware,

software, people and procedures.
System Design

Annex A: EUROCAE ED-153 Mapping Tables

101

Objective: 4.3.3 Process Implementation SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.3.1

A software lifecycle model appropriate to the scope, magnitude,

and complexity of the project shall be defined and placed under

configuration management.

Project Planning,
Configuration
Management

4.3.3.2

It shall include, as a minimum:

 end of activity/phase criteria for each activity/phase
 joint technical review for each activity/phase

Project Initialisation

4.3.3.3

Standards/Rules, methods, tools, and computer programming

languages shall be selected, tailored and used according to the

SWAL.

Software
Requirements
Engineering

Note: Process implementation includes lifecycle definition, output documentation, output
configuration management, SW products problems, environment definition, development plan,
COTS

Objective: 4.3.4 Software Requirements Analysis SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.4.1

The developer shall establish and document software

requirements, using software requirements standards/rules as

defined per Objectives 4.3.9 & 4.3.10.

Software
Requirements
Engineering

4.3.4.2

The Software Requirements shall (4.3.4.2), as a minimum:

 specify the functional behaviour of the ANS software,
capacity, accuracy, timing performances, software
resource usage on the target hardware, robustness to
abnormal operating conditions, overload tolerance.

 be complete and correct;

 comply with the System Requirements;
 an identification of the configuration/adaptation data

range.

Software
Requirements
Engineering

4.3.4.3 Algorithms shall be specified.
Software
Requirements
Engineering

Objective: 4.3.5 Software Architectural Design SWAL 3

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.5.1

The developer shall transform the requirements for the software
into an architecture that describes its top-level structure and
identifies the software components.

Note: The scope of this objective is top level SW architecture

definition, top level interfaces design, SW integration definition, SW

architecture definition criteria

Software Design

Annex A: EUROCAE ED-153 Mapping Tables

102

Objective: 4.3.6 Software Detailed Design SWAL 2

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.6.1

The developer shall develop a detailed design for each software
component of the software using software design
standards/rules.

Note: The scope of this objective is SW detailed design definition,

interfaces design, SW Units tests definition.

Software
Component Design

Objective: 4.3.7 Software Integration SWAL 3

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.7.1
An integration plan shall be developed to integrate the software

units and software components into the software.
Software
Integration

4.3.7.2
The plan shall include verification/test requirements,
procedures, data responsibilities, and schedule.

Software
Integration

4.3.7.3 The plan shall be documented.
Software
Integration

Note: The scope of this objective is SW integration plan, SW integration definition, user
documentation, SW validation preparation, SW integration evaluation (partially).

Objective: 4.3.8 Software Installation SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.8.1
A plan shall be developed to install the software product in the

target environment as designated in the contract.
System Integration

4.3.8.2
The resources and information necessary to install the software
product shall be documented and made available before
installation.

System Integration

Objective: 4.3.9
Standards/Rules Definition – Development
Plan

SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.9.1
The developer shall develop plans for conducting the activities

of the development process.
Project Planning

4.3.9.2

The plans shall include as a minimum: specific standards/rules,

methods, tools, actions and responsibility associated with the

development and validation of all requirements including safety.

If necessary, separate plans may be developed.

Project Planning

4.3.9.3 These plans shall be documented and executed. Project Planning

Annex A: EUROCAE ED-153 Mapping Tables

103

Objective: 4.3.10 Standards/Rules – Software Development Plan SWAL 2 – 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.10.1
The developer shall identify SW Requirements standards/rules

(note minimum content identified in objective 4.3.4)SWAL4.
Project Planning

4.3.10.2 The developer shall identify SW Design Standards/RulesSWAL3. Project Planning

4.3.10.3 The developer shall identify SW Coding Standards/RulesSWAL2. Project Planning

Also, references to the standards/rules for previously developed software, including COTS
software, if those standards/rules are different.

Objective: 4.3.11
Requirements Development Management –
Software Development Environment

SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.11.1

The developer shall identify the selected software development
environment in terms of:
(1) The chosen requirements development method(s),
procedure(s) and tools (if any) to be used.
(2) The hardware platforms for the tools (if any) to be used

Example: Method(s) are for example: SADT, SART, OOD…,

though procedures are organisational ways of performing

requirement management.

Project Planning

Objective: 4.3.12 Use of a Requirement Specification Tool SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.12.1 A Requirement specification tool shall be used.
Software
Requirements
Engineering

Objective: 4.3.13 Resource Management SWAL 3 – 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.13.1

A necessary margin with regards usage of resources (e.g.

memory, CPU load, drivers, …) for safety purpose shall be

specifiedSWAL4.

Software
Requirements
Engineering

4.3.13.2
The margin shall be measured or verified to ensure satisfaction

of the specificationSWAL3.
Software Test

4.3.13.3
If many software share the same resources, then the margin
shall be evaluated at system levelSWAL3.

System Integration

Annex A: EUROCAE ED-153 Mapping Tables

104

Objective: 4.3.14
Rationale for Design Choices especially Real
Time Oriented One

SWAL 3

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.14.1

The developer shall define real-time design features of software
components at architectural design level.
A set of properties, such as the following, shall be identified:

 tasks and run- time aspects (priority, events,
communications, ….)

 interruptions (priorities, delay management, SW
watchdog…)

 treatment & propagation of errors (detection & recovering
mechanisms, ….)

 data management (protection & deadlock mechanisms,
….)

 initialisation/ stop (exchange of data during these
phases)

Software Design

Objective: 4.3.15 Traceability SWAL 1 – 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.15.1
The developer shall ensure there is traceability between

System and Software requirementsSWAL4.

Software
Requirements
Engineering

4.3.15.2

The developer shall ensure there is traceability between

Software requirements and Software design (Software

component level, architectural design)SWAL3.

Software Design,
Software
Component Design

4.3.15.3
The developer shall ensure there is traceability between

Software Architectural Design and CodeSWAL2.
Software
Construction

4.3.15.4
The developer shall ensure there is traceability between Code
and ExecutableSWAL1.

Software
Construction

Objective: 4.3.16 Traceability – Verification/Transition Criteria SWAL 2 – 3

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.16.1

The developer shall describe the software lifecycle processes

to be used to form the specific software lifecycle(s) to be used

on the project, including the transition criteria for the software

development processesSWAL3.

Project Planning

4.3.16.2

All essential information from a phase of the software lifecycle

needed for the correct execution of the next phase shall be

available and verifiedSWAL3.

See also evaluation criteria for Specification, design, code, test,

integration.

Project Controlling

4.3.16.3 Transition criteria for all phases shall be definedSWAL2. Project Planning

4.3.16.4
Transition criteria for Requirements Analysis and Verification

phases shall be definedSWAL3.
Project Planning

Annex A: EUROCAE ED-153 Mapping Tables

105

Objective: 4.3.17
Design Tool – Software Development
Environment

SWAL 3

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.17.1

If a design tool is used, then the developer shall identify the
selected software development environment in terms of:
(1) The chosen design method(s), procedure(s) and tools (if
any) to be used.

(2) The hardware platforms for the tools (if any) to be used.

Project Planning

Objective: 4.3.18 Use of Design Tool SWAL 3

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.18.1 A design tool shall be used. Software Design

Objective: 4.3.19 Code Generation Environment SWAL 1 – 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.19.1

Software Development Environment:

The developer shall identify the selected software development

environment in terms ofSWAL4:

(1) The programming language(s), coding tools, compilers,

linkage editors and loaders to be used,

(2) The hardware platforms for the tools to be used.

Software
Requirements
Engineering

4.3.19.2

Programming Languages:

The selection of suitable programming languages shall be

justified for the required Assurance LevelSWAL2.

Software Safety
Requirements
Analysis

4.3.19.3

Compilers considerations:

Compilers mode of use (optimisations, limitations,…) shall be

definedSWAL4.

Software
Requirements
Engineering

4.3.19.4

SW development tool validation:

The context for such a validation shall be definedSWAL1.

(Validation/certification of compilers/linkers/code generation

tools)

Software
Requirements
Engineering

Objective: 4.3.20 Complexity Constraints SWAL 2

Activities [EUROCAE09]: ISaPro
®
 Mapping:

4.3.20.1
A level of complexity (as well as selected criteria defining this

complexity) shall be defined and measured.
Project Planning

Summary

Table 11 shows the compacted mapping results for the objectives of the primary lifecycle

process development to the processes of the ISaPro® framework. The table contains only

those ISaPro® processes, which have at least a single mapping to one of the objectives.

Annex A: EUROCAE ED-153 Mapping Tables

106

ISaPro
®
 Processes

[TSS12]
ED-153 Objective N°

[EUROCAE09]
Comments

Project Management Lifecycle

Project Initialisation 4.3.3
4.3.3:
Added activity for defining stage gates in
project management lifecycle.

Project Planning
4.3.3, 4.3.9, 4.3.10,
4.3.11, 4.3.16, 4.3.17,
4.3.20

4.3.10:
Focussing on software standards/rules.
Therefore an activity was added for
identification of necessary standards and/or
rules.
4.3.11:
Added activity for defining requirement
engineering methods, procedures and the
selection of a tool.
4.3.16:
Added activity for describing software
development lifecycle, including transition
criteria for all phases.
4.3.17:
Added activity for defining design methods,
procedures and the selection of a tool.
4.3.20:
Added activity for defining and measuring the
complexity of the project.

Project Controlling 4.3.16

Safety Lifecycle

Software Safety
Requirements Analysis

4.3.19

Engineering Lifecycle

Requirements
Engineering

4.3.1

System Design 4.3.2

Software Requirements
Engineering

4.3.3, 4.3.4, 4.3.12,
4.3.13, 4.3.15, 4.3.19

4.3.4:
Added activity for defining
configuration/adaption data range.
4.3.13:
Expanded the resource requirement activity to
define a necessary margin for safety purposes.

Software Design
4.3.5, 4.3.14, 4.3.15,
4.3.18

4.3.5:
Added activity for definition of software
integration.
4.3.14:
Added activity especially for real-time design.

Software Component
Design

4.3.6, 4.3.15
4.3.6:
Expanded activity by mentioning
implementation of unit tests.

Software Construction 4.3.15

 Software Integration 4.3.7

Software Test 4.3.13

System Integration 4.3.8, 4.3.13
4.3.8:
Added activity for documentation of installation
procedure and deposition of resources.

Annex A: EUROCAE ED-153 Mapping Tables

107

Support Processes

Configuration
Management

4.3.3

Table 11: Mapping of Development Process Objectives

Supporting Lifecycle Processes

Configuration Management

Objective: 5.2.1
Configuration Management Process
Implementation

SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.2.1.1 A configuration management plan shall be developed.
Configuration
Management

5.2.1.2

The plan shall include, as a minimum:

 the configuration management activities;

 procedures and schedule for performing these activities;

 the organisation(s) responsible for performing these
activities; and their relationship with other
organisations, such as software development or
maintenance;

 Software lifecycle environment control management
(tools used to develop or verify SW)

 Definition of SW lifecycle data (any output relevant to the
safety assurance of the software) control management.

Configuration
Management

5.2.1.3
The plan shall be documented, placed under configuration

management and implemented.
Configuration
Management

Objective: 5.2.2 Configuration Identification SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.2.2.1

A scheme shall be established for identification of software and

their versions to be controlled throughout the complete lifecycle

of the software.

Configuration
Management

5.2.2.2

For each version of all software, the following shall be

identified, as a minimum:

 the documentation that establishes the baseline;

 the version references;

 the problem reports list (those already fixed, those fixed
in that particular version and those still open if any);

 and other identification details.

Configuration
Management

5.2.2.3
The items to be configuration-identified shall be identified,

along with their associated configuration management level.
Configuration
Management

Annex A: EUROCAE ED-153 Mapping Tables

108

Objective: 5.2.3 Configuration Control SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.2.3.1

The following shall be performed: identification and recording of

change requests; analysis and evaluation of the changes;

approval or rejection of the request; and implementation,

verification, and release of the modified software.

Change
Management

5.2.3.2

An audit trail shall exist, whereby each modification, the reason

for the modification, and authorisation of the modification can

be traced.

Change
Management

5.2.3.3
Control and audit of all accesses to the controlled software that

handle safety related functions shall be performed.
Change
Management

Objective: 5.2.4 Configuration Status Accounting SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.2.4.1

Management records and status reports that show the status

and history of controlled software including baseline shall be

prepared.

Configuration
Management

5.2.4.2

Status reports shall include the number of changes for a

project, latest software versions, release identifiers, the number

of releases, and comparisons of releases.

Configuration
Management

Objective: 5.2.5 Configuration Evaluation SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.2.5.1

The following shall be determined and ensured: the functional

completeness of the software against their requirements and

the physical completeness of the software (whether their design

and code reflect an up-to-date technical description).

Change
Management

Objective: 5.2.6 Retrieval & Release Process SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.2.6.1 A retrieval and release process shall exist.
Configuration
Management

5.2.6.2 A retrieval and release process shall be documented.
Configuration
Management

5.2.6.3
The release and delivery of software products and

documentation shall be formally controlled.
Configuration
Management

5.2.6.4
Master copies of code and documentation shall be maintained

for the life of the software product.
Configuration
Management

Annex A: EUROCAE ED-153 Mapping Tables

109

Objective: 5.2.7 Use of a CM Tool SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.2.7.1
A tool shall be used to perform Software configuration

management.
Configuration
Management

Objective: 5.2.8 Use of a CM Tool (Acquirer Agreement) SWAL 3

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.2.8.1
The acquirer shall approve the selected software configuration

management tool.
Not applicable

Objective: 5.2.9 At Level of SW Component SWAL 3

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.2.9.1
The software configuration management shall be performed at

the Software Unit level.
Configuration
Management

Objective: 5.2.10 Configuration Management Traceability SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.2.10.1
Software lifecycle data (any output) shall be traceable between

versions.
Configuration
Management

5.2.10.2
All lifecycle data shall be traceable to the version of software

being deployed.
Configuration
Management

Objective: 5.2.11 At Level of SW Source Code SWAL 2

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.2.11.1
The software configuration management shall be performed at

the Software source code level.
Configuration
Management

Annex A: EUROCAE ED-153 Mapping Tables

110

Quality Assurance Process

Objective: 5.3.1 Process Implementation SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.3.1.1
A quality assurance process tailored to the project shall be

established.
Quality Assurance

5.3.1.2

The objectives of the quality assurance process shall be to

assure that the software products and the processes employed

for providing those software products comply with their

established requirements and adhere to their established plans.

Quality Assurance

5.3.1.3

A plan for conducting the quality assurance process activities

and tasks shall be defined, implemented, and maintained

(including configuration management of evidence records)

throughout the relevant parts of the software lifecycle.

Quality Assurance

Objective: 5.3.2 Product Assurance SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.3.2.1

It shall be assured that all the plans required by ED-153 are

defined, are mutually consistent, and are being executed as

required.

Quality Assurance

5.3.2.2 A Software Conformity review shall be performed. Quality Assurance

Objective: 5.3.3 Process Assurance SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.3.3.1

It shall be assured that those software lifecycle processes

(supply, development, operation, maintenance, and supporting

processes including quality assurance) employed for the project

adhere to the plans.

Quality Assurance

5.3.3.2

It shall be assured that the internal software engineering

practices, development environment and test environment

adhere to the plans.

Quality Assurance

Verification Process

Objective: 5.4.1 Verification Process Implementation SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.4.1.1
A verification process tailored to the software shall be

established.
Verification

5.4.1.2
The output of the verification process shall be documented and

distributed to the interested parties.
Verification

Annex A: EUROCAE ED-153 Mapping Tables

111

Objective: 5.4.2 Verification Plan SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.4.2.1 A verification plan shall be defined. Verification

5.4.2.2

The plan shall address the lifecycle verification activities and

phase outputs subject to verification and related resources,

responsibilities, pass fail criteria, methods and schedule.

Verification

5.4.2.3

The plan shall address procedures for forwarding verification

reports to the interested parties stating the action to be taken

by each party.

Verification

Note: Ensure that the description of the various testing activities and the phase of the SW lifecycle
(FAT, SAT, software testing) is included somewhere eg as part of the verification plan.
Note: Objectives regarding the verification of the configuration/adaptation data may be expanded in
operation process (see 4.4). The strategy for verifying the appropriate combination of
configuration/adaptation data is described in the verification plan.

Annex A: EUROCAE ED-153 Mapping Tables

112

Objective: 5.4.3 Verification of Software Requirements SWAL 3 – 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.4.3.1
It shall be verified that software requirements are correct and

completeSWAL4;

Software
Requirements
Engineering

5.4.3.2

The software requirements shall be verified considering the

functional behaviour of the implemented Software complies

with the Software RequirementsSWAL4;

Software
Requirements
Engineering

5.4.3.3

The software requirements shall be verified considering the

timing performances of the implemented software complies with

the Software RequirementsSWAL4;

Software
Requirements
Engineering

5.4.3.4

The software requirements shall be verified considering the

software requirements are consistent, feasible, and

verifiableSWAL4;

Software
Requirements
Engineering

5.4.3.5

The software requirements shall be verified considering

implemented software robustness to abnormal operating

conditions complies with the Software RequirementsSWAL3;

Software
Requirements
Engineering

5.4.3.6

The software requirements shall be verified considering

external consistency (boundaries) with the system

requirementsSWAL4;

Software
Requirements
Engineering

5.4.3.7
The software requirements shall be verified considering internal

consistency between software requirementsSWAL4;

Software
Requirements
Engineering

5.4.3.8

The software requirements shall be verified considering

compatibility between implemented software and the HW/SW

features of the target computer (system response time,

Input/output HW, operation on the target computer)SWAL4;

Software
Requirements
Engineering

5.4.3.9

The software requirements shall be verified considering

Software requirements conform to Software requirements

standards/rulesSWAL4;

Software
Requirements
Engineering

5.4.3.10
The software requirements shall be verified considering

algorithms are accurate and correctSWAL3;

Software
Requirements
Engineering

5.4.3.11

The software requirements shall be verified considering the

capacity of the implemented software complies with the

Software RequirementsSWAL3;

Software
Requirements
Engineering

5.4.3.12

The software requirements shall be verified considering the

overload tolerance of the implemented Software complies with

the Software RequirementsSWAL3.

Software
Requirements
Engineering

Annex A: EUROCAE ED-153 Mapping Tables

113

Objective: 5.4.4 Integration Verification SWAL 2 – 3

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.4.4.1

The integration verification shall verify whether the software

components have been completely and correctly integrated into

the softwareSWAL3.

Software
Integration

5.4.4.2

The integration verification shall verify whether the software

units have been completely and correctly integrated into the

software componentSWAL2.

Software
Integration

5.4.4.3

The integration verification shall verify whether the hardware

items, software, and manual operations of the system have

been completely and correctly integrated into the systemSWAL3.

Software
Integration

5.4.4.4

The integration verification shall verify whether the integration

tasks have been performed in accordance with an integration

planSWAL3.

Software
Integration

Examples of verification criteria are (especially as far as isolation between software is
concerned):

 Linking and loading data and memory map

 Data control and coupling

 Incorrect HW addresses

 Memory overlaps

 Missing SW components.
Note: Global verification should be performed either through tests or other methods like reviews

Annex A: EUROCAE ED-153 Mapping Tables

114

Objective: 5.4.5 Verification of Software Architectural Design SWAL 3

Activities [EUROCAE09]: ISaPro
®
 Mapping:

When evaluating the tests, test results to verify the software architectural design, and user
documentation:

5.4.5.1
External consistency with the software requirements (hardware-

software compatibility) shall be considered;
Software Design

5.4.5.2
Internal consistency (data flow and control flow) shall be

considered;
Software Design

5.4.5.3
Verification coverage of the software architectural design shall

be considered;
Software Design

5.4.5.4
Design conformity to Design standards/rules shall be

considered;
Software Design

5.4.5.5
Appropriateness of test standards/rules and methods used

shall be considered;
Software Design

5.4.5.6 Conformance to expected results shall be considered; Software Design

5.4.5.7 Feasibility of software design testing shall be considered; Software Design

5.4.5.8 Feasibility of maintenance shall be considered; Software Design

5.4.5.9
Verification criteria on which verification completion will be

judged shall be considered.
Software Design

5.4.5.10 The results of the evaluations shall be documented. Software Design

Note: The compliance should be verified according to the the definition of the transition criteria
between lifecycle phases (cf SWAL allocation for Development process)

Annex A: EUROCAE ED-153 Mapping Tables

115

Objective: 5.4.6 Verification of Detailed Design SWAL 2

Activities [EUROCAE09]: ISaPro
®
 Mapping:

When evaluating the software code and verification results:

5.4.6.1
External consistency with the requirements and design of the

software (hardware-software compatibility) shall be consider;
Software
Component Design

5.4.6.2
Internal consistency between detailed design requirements

shall be consider;
Software
Component Design

5.4.6.3
Verification coverage of detailed design (units)shall be

considered;
Software
Component Design

5.4.6.4 Code conforms to Code standards/rules shall be consider;
Software
Component Design

5.4.6.5
Verification of the coverage of the software structure (statement

coverage) shall be consider - see note below this table;
Software
Component Design

5.4.6.6
Appropriateness of coding methods and standards/rules used

shall be consider;
Software
Component Design

5.4.6.7 Feasibility of software code verification shall be consider;
Software
Component Design

5.4.6.8 Feasibility of maintenance shall be consider.
Software
Component Design

5.4.6.9 The results of the evaluations shall be documented.
Software
Component Design

Note: Global verification should be performed either through tests or other methods like reviews or
other means…..

Objective: 5.4.7 Removed -

Objective: 5.4.8 Verification of Executable Code SWAL 1

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.4.8.1

Executable code and verification results shall be evaluated

considering the criteria listed below:

 External consistency with the code of the software (eg is
the compiler generating an appropriate executable or
object code?);

 Internal consistency between exe requirements (eg: is
the compiler always generating the same executable or
object code for the same source?);

 Verification of the translation of the software source code
into object code (eg is the compiler generating
additional and unnecessary executable or object code,
such as dead executable code?);

 Feasibility of executable verification;

 Verification of software structure (MC/DC).

Software
Construction

5.4.8.2 The results of the evaluations shall be documented.
Software
Construction

Annex A: EUROCAE ED-153 Mapping Tables

116

Objective: 5.4.9 Data Verification SWAL 2

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.4.9.1

The data structures specified during detailed design shall be

verified for:

 Completeness

 Self-Consistency

 Protection against alteration or corruption

Software
Component Design

Objective: 5.4.10 Traceability SWAL 1 – 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.4.10.1
Traceability shall be verified between System and Software

requirementsSWAL4

Software
Requirements
Engineering

5.4.10.2
Traceability shall be verified between Software requirements

and Software Architectural DesignSWAL3
Software Design

5.4.10.3
Traceability shall be verified between Software Architectural

Design and Detailed DesignSWAL2
Software
Component Design

5.4.10.4
Traceability shall be verified between Software Detailed Design

and Executable CodeSWAL1
Software
Construction

5.4.10.5
Traceability shall be verified between verification evidence and

Software RequirementsSWAL4
Software Test

5.4.10.6
Traceability shall be verified between safety assurance

evidence and the version of the software being deployedSWAL4
Software
Integration

Objective: 5.4.11 Complexity Measures SWAL 2

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.4.11.1

It shall be demonstrated that the measured complexity is within

the defined threshold by:

 analysing the measures, and

 applying corrective actions.

System Integration

5.4.11.2
If value exceeds thresholds (to be defined), a justification shall

be provided.
System Integration

Annex A: EUROCAE ED-153 Mapping Tables

117

Objective: 5.4.12 Verification of Verification Process Results SWAL 2 – 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.4.12.1

Verification cases, procedures and results shall be verified, so

that:

 Verification procedures are correct and complete and
discrepancies are justifiedSWAL4

 Verification results are correct and complete and
discrepancies are justifiedSWAL4

 Verification of the software requirements verification
cases, procedures and results is correct and complete
and discrepancies are justifiedSWAL4

 Verification of the software design (architectural level)
verification cases, procedures and results is correct and
complete and discrepancies are justifiedSWAL3

 Verification of the software design (detailed design)
verification cases, procedures and results is correct and
complete and discrepancies are justifiedSWAL2

 Verification of the software integration verification cases,
procedures and results is correct and complete and
discrepancies are justifiedSWAL3

 Verification of the software data verification cases,
procedures and results is correct and completeSWAL3

 Verification of the traceability verification procedures and
results is correct and complete and discrepancies are
justifiedSWAL4

Verification

NOTE: Verification may be performed through inspection, analysis, demonstration or a combination
of them all throughout the lifecycle.

Objective: 5.4.13 Verification of Retrieval and Release Process SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.4.13.1 The Software Retrieval and release process shall be verified.
Configuration
Management

Validation Process

According EUROCAE [EUROCAE09] the validation process is considered as out of

scope for the guidance ED-153.

Joint Review Process

Objective: 5.6.1 Process Implementation SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.6.1.1
Periodic reviews shall be held at predetermined milestones as

specified in the project plan(s).
Project-Controlling

5.6.1.2 The review results shall be documented and distributed. Project-Controlling

Annex A: EUROCAE ED-153 Mapping Tables

118

Objective: 5.6.2 Project Management Reviews SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.6.2.1

Project status shall be evaluated relative to the applicable

project plans, schedules, standards/rules, transition criteria and

guidelines.

Project-Controlling

Objective: 5.6.3 Technical Reviews SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

5.6.3.1
Technical reviews shall be held to evaluate the software

products or services under consideration.
Configuration
Management

Summary

Table 12 depicts the compacted mapping results of the objectives for the supporting

processes. The table contains only those ISaPro® processes, which have at least a single

mapping to one of the safety assurance system objectives.

ISaPro
®
 Processes

[TSS12]
ED-153 Objective N°

[EUROCAE09]
Comments

Project Management Lifecycle

Project Controlling 5.6.1, 5.6.2

Engineering Lifecycle

Software Requirements
Engineering

5.4.3, 5.4.10

5.4.3:
Added activities for verification of considered
requirements regarding robustness, used
algorithms, capacity and overload tolerance of
the implemented software.

Software Design 5.4.5, 5.4.10

5.4.5:
Added activities for verification of coverage,
feasibility study, verification criteria and
documentation of the whole software design
evaluation.

Software Component
Design

5.4.6, 5.4.9, 5.4.10

5.4.6:
Added activities for verification of coverage,
feasibility study and documentation of the
whole software component design evaluation.

Software Construction 5.4.8, 5.4.10
5.4.8:
Added activity for evaluation of executable
code and verification results.

Software Integration 5.4.4, 5.4.10

5.4.4:
Expansion of the activity including
completeness and correctness.
5.4.10:
Added activity for ensuring traceability between
safety assurance and the version of software.

Software Test 5.4.10

System Integration 5.4.11
5.4.11:
Added activity for verifying the previously
defined complexity of the project.

Annex A: EUROCAE ED-153 Mapping Tables

119

Support Processes

Configuration
Management

5.2.1, 5.2.2, 5.2.4,
5.2.6, 5.2.7, 5.2.9,
5.2.10, 5.2.11, 5.4.13,
5.6.3

5.2.1:
Expanded activity because of the strong focus
on software.
5.2.4:
Added activity for creating management
records and status reports.
5.2.6:
Added activity for a retrieval and release
process for configuration items.
5.2.7:
Added activity for using a configuration
management tool.
5.2.9 / 5.2.11:
Dependent on SWAL level, the configuration
management process has to be performed on
different levels.
5.2.10:
Added activity for ensuring traceability between
software lifecycle data and deployed versions.

Quality Assurance 5.3.1, 5.3.2, 5.3.3

Verification 5.4.1, 5.4.2, 5.4.12
5.4.12:
Expanded activity by adding the verification of
the verification.

Change Management 5.2.3, 5.2.5

5.2.3:
Added activity for a change management audit
trail, including controlling of access to the
software.

Table 12: Mapping of Supporting Processes Objectives

Organisational Lifecycle Processes

Management Process

Objective: 6.1.1
Management Process Implementation
Initiation & Scope Definition

SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

6.1.1.1 A management process tailored to the project shall be defined. Project Initialisation

6.1.1.2
The output of the management process shall be documented

and distributed.
Project Initialisation

6.1.1.3
The management process shall be initiated by establishing the

requirements of the process to be undertaken.
Project Initialisation

6.1.1.4

The manager shall establish the feasibility of the process by

checking that the resources (personnel, materials, technology,

and environment) required to execute and manage the process

are available, funded, adequate, and appropriate and that the

timescales to completion are achievable.

Project Initialisation

Annex A: EUROCAE ED-153 Mapping Tables

120

Objective: 6.1.2 Planning SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

6.1.2.1
The manager shall prepare the plans for execution of the

process.
Project Planning

6.1.2.2

The plans associated with the execution of the process shall

contain descriptions of the associated activities and tasks and

identification of the software products that will be provided.

Project Planning

6.1.2.3

These plans shall include, as a minimum, the following:

 Schedules for the timely completion of tasks;

 Estimation of effort;

 Adequate resources needed to execute the tasks;

 Allocation of tasks (including who, what and when);

 Assignment of responsibilities;

 Quantification of project risks associated with the tasks or
the process itself;

 Quality control measures to be employed throughout the
process;

 Costs associated with the process execution;

 Provision of environment and infrastructure.

Project Planning

Objective: 6.1.3 Execution & Control SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

6.1.3.1

The manager shall initiate the implementation of the plan to

satisfy the objectives and criteria set, exercising control over

the process.

Project Controlling

6.1.3.2

The manager shall monitor the execution of the process,

providing both internal reporting of the process progress and

external reporting to the acquirer as defined in the contract.

Project Controlling

6.1.3.3
The manager shall investigate, analyse, and resolve the

problems discovered during the execution of the process.
Project Controlling

Objective: 6.1.4 Review & Evaluation SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

6.1.4.1
The manager shall ensure that the software lifecycle data is

evaluated for satisfaction of requirements.
Project Controlling

6.1.4.2

The manager shall assess the evaluation results of the

software products, activities, and tasks completed during the

execution of the process vis-à-vis the achievement of the

objectives and completion of the plans.

Project Controlling

Annex A: EUROCAE ED-153 Mapping Tables

121

Objective: 6.1.5 Closure SWAL 4

Activities [EUROCAE09]: ISaPro
®
 Mapping:

6.1.5.1

When all software products, activities, and tasks are completed,

the manager shall determine whether the process is complete

taking into account the criteria as specified in the contract or as

part of organisation's procedure.

Project Close-
Down

6.1.5.2

The manager shall check the results and records of the

software products, activities, and tasks employed for

completeness.

Project Close-
Down

6.1.5.3
These results and records shall be archived in a suitable

environment as specified in the contract.
Project Close-
Down

Summary

Table 13 shows the compacted mapping results of the management process. The table

contains only those ISaPro® processes, which have at least a single mapping to one of

the safety assurance system objectives.

ISaPro
®
 Processes

[TSS12]
ED-153 Objective N°

[EUROCAE09]
Comments

Project Management Lifecycle

Project Initialisation 6.1.1

Project Planning 6.1.2

6.1.2:
Added activities for describing project
deliverables and the provision of environment
and infrastructure.

Project Controlling 6.1.3, 6.1.4

6.1.4:
Added activity for evaluation of software
lifecycle data and results of activities and
tasks.

Project Close-Down 6.1.5

6.1.5:
Added activities for determination of the
achieved project results and records, when the
project is finished.

Table 13: Mapping of Management Process Objectives

Annex B: Adapted Integrated Process Model

122

Annex B: Adapted Integrated Process Model

This appendix includes all EUROCAE ED-153 (see chapter 3) required activities per each

process of the ISaPro® framework (see chapter 4). In addition the appendix comprises

the linking of the activities to the phases of the agile procedure model (see chapter 8)

where these activities have to be conducted.

The activities are composed of the following:

 Activities already intended in ISaPro® and perfectly fitting to one or more objectives

 Activities already intended in ISaPro®, which are extended or amended in order to

fit to one or more objectives

 Own activities, which were identified during analysis of the objectives and therefore

added to this adapted process model

Already intended activities are written in italic in order to indicate that these are developed

by Tschürtz et al. [TSS12]. Further amendments and identified activities during analysis

of ED-153 [EUROCAE09] are written in ordinary style. A SWAL (see chapter 3.2) added

as subscripted information to an activity indicates that this activity has to be performed

only when the mentioned or a more rigorous SWAL is required. Numbers in brackets refer

to the objective N° of ED-153 (see Annex A). Activities, where no objective number is

available, are not specifically mentioned by the guidance, but are valuable in order to

assure safety compliance.

The linking to the agile procedure is done by marking each activity with a specific symbol,

where each symbol represents one phase of the procedure model:

 Pre-game phase (see chapter 8.2)

 Iteration-driven phase (see chapter 8.3)

 Spin-off phase (see chapter 8.4)

 Wrap-up phase (see chapter 8.5)

Project Management Lifecycle

Project Initialisation:

 Enquiry of business requirements (3.1.1.1, 3.1.1.2, 6.1.1.3)

 First estimation of safety integrity level

 Definition of project strategy (6.1.1.1)

 Preparation of rough schedule, including milestones (4.3.3.2)

 Definition of stage gates and their corresponding criteria to pass (4.3.3.2)

 Definition of the number of necessary audits, assessments and reviews (4.3.3.2)

 Examination of feasibility (technical and organisational) (6.1.1.4)

 Creation of first draft of project management plan (6.1.1.2)

 First estimation of project risks

Annex B: Adapted Integrated Process Model

123

Project Planning:

 Identification of required norms, standards and rules (3.1.4.1, 4.3.9.2)

o Safety standard specifications, software requirement, designSWAL3 and coding

SWAL2 rules, etc. (4.3.10.1, 4.3.10.2, 4.3.10.3)

 Definition and measuring of project complexitySWAL2 (4.3.20.1)

 Definition of safety integrity level

 Creation and integration of safety planning (3.2.1.1, 3.2.2.1)

 Definition of way of working and derivation of project life cycles (3.2.1.1, 4.3.3.1,

4.3.3.3)

o Definition of software development lifecycleSWAL3 and transition criteria for

development, requirements and verification phasesSWAL3 / all phasesSWAL2

(4.3.16.1, 4.3.16.3, 4.3.16.4)

o Definition of requirements, development methods, procedures and

identification and selection of a requirement specification tool (4.3.11.1)

o Definition of design methods, procedures, and identification and selection of

a design toolSWAL3 (4.3.17.1)

 Planning of productivity (4.3.9.1, 4.3.9.2)

 Estimation of work packages (6.1.2.2, 6.1.2.3)

 Definition of deliverables (6.1.2.2)

 Planning of time schedule (6.1.2.3)

 Definition of project organisation (4.3.9.2, 6.1.2.3)

 Identification of project risks and initialisation of risk management (6.1.2.3)

 Planning of project controlling meetings (6.1.2.3)

 Provision of environment and infrastructure (6.1.2.3)

 Finishing of project management plan (4.3.9.3, 6.1.2.1)

 Reviews of all created documents (especially project management plan) (3.2.3.1)

 Gain commitment from stakeholders and release of project management plan

(3.2.4.1)

Project Controlling (5.6.1.1, 6.1.3.1):

 Identification of status quo (3.4.3.1, 5.6.2.1, 6.1.3.2)

 Comparison of status quo to planned one and identification of deviations (particular

focus on software safety assessment activities) (3.4.3.1, 5.6.2.1, 6.1.3.2)

 Evaluation of software lifecycle data and assessment of completed software

products, activities and tasks (6.1.4.1, 6.1.4.2)

 Monitoring of involvement of stakeholders (6.1.3.2)

 Monitoring of project risks

 Assessment and evaluation of milestonesSWAL3 (4.3.16.2)

 In the case of a deviation: execution of cause and consequences analysis (6.1.3.3)

Annex B: Adapted Integrated Process Model

124

 Planning of steering measures (6.1.3.3)

 Creation of report (5.6.1.2, 6.1.3.2)

 Updating the project plans

Project Close-Down:

 Ensuring of completeness for all software products, activities, tasks and their

results and records (6.1.5.1, 6.1.5.2)

 Archiving of all results and records in a suitable environment (6.1.5.3)

Safety Lifecycle

Preliminary Hazard Identification (PHI):

 Definition of safety goals

 Creation of a preliminary hazard list based on information of business

requirements and rough concept

Functional Hazard Evaluation (FHE):

 Identification of hazards on the basis of the technical concept (3.3.1.2, 3.3.2.2)

 Analysis of failure modes relating to the operation of the system (using of error and

failure checklists) (3.3.1.1)

 Expansion of these checklists (3.3.1.2)

 Analysis of hypothetical failure modes (3.3.1.1)

 Analysis of effects and consequences of those failure modes (3.3.2.1)

o Dangerous system states, accidents, disadvantages

 Definition and review of safety requirements on system level

Preliminary System Safety Evaluation (PSSE):

 Ensuring that system safety requirements are realised by the system design

 Identification of newly raised hazards by the design itself

 Expansion of the hazard list created in previous processes

Software Safety Requirements Analysis (SSRA):

 Analysis of software hazards (including evaluation) (3.3.2.1, 3.3.2.2)

 Analysis of causes and creation of a list consisting of common modes of failure

(3.3.1.1, 3.3.1.2)

 Update of initial risk assessment and mitigation process based on executed

analyses (3.3.3.1)

 Identification of safety-critical interfaces

 Identification of hazard mitigation requirements (3.4.2.1)

Annex B: Adapted Integrated Process Model

125

 Identification of safety-critical software requirements based on functional and non-

functional software requirements (3.3.4.1)

 Specification of software safety integrity level (SIL) (3.3.4.1)

 Definition of necessary tools for software development (programming language,

compiler, etc.)SWAL2 (4.3.19.2)

 Creation and release of software safety requirements (3.3.4.1)

Software Safety Design Analysis (SSDA):

 Ensuring of consistency to risk assessment and mitigation identification during

preliminary system safety evaluation (PSSE) (3.1.5.1)

 Analysis of timing, throughput and sizing of software

System Safety Evaluation (SSE):

 Definition of required methods related to implementation

 Ensuring of accomplishment of required tests

Engineering Lifecycle

Concept:

 Definition of yet is to be developed system (3.1.1.3)

 Definition of system boundaries (3.1.1.4)

 Definition of required safety standard specifications (3.1.3.1)

 Identification of system environment and analysis of system behaviour (3.1.2.1)

 Definition of system interfaces (3.1.1.5)

System Requirements Engineering:

 Definition of interface requirements (4.3.1.1)

 Definition of system requirements (4.3.1.1)

o Function requirements

o Non-functional requirements

o Safety requirements (derived from FHE)

 Analysis of system requirements (4.3.1.1)

o Prioritisation of requirements

o Examination as to whether requirements are correct, complete, consistent,

feasible and testable

o Identification of operation environment

 Evaluation and actualisation of system requirements (4.3.1.1)

o Defined process for handling of changes

o Evaluation of human interface

 Ensuring consistency and traceability

Annex B: Adapted Integrated Process Model

126

System Design:

 Definition of system architecture (4.3.2.1)

 Mapping of defined system requirements to system elements (4.3.2.1)

o Mapping of functional, non-functional and safety requirements

 Definition of necessary interfaces (4.3.2.1)

o Designing and documentation of internal and external interfaces

 Analysis of preliminary system safety assessment (PSSE) and incorporation of

inevitable design changes (4.3.2.1)

 Ensuring consistency and traceability

Software Requirements Engineering:

 Execution of requirements analysis (4.3.4.1)

o Collecting, analysing, categorising, prioritising and documenting

requirements

o Analysis as to whether requirements are correct, complete, consistent,

feasible and testable (3.4.1.1, 5.4.3.1, 5.4.3.4, 5.4.3.6, 5.4.3.7)

o Use of a requirement specification tool (4.3.12.1)

 Specification of software requirements (4.3.4.2)

o Functional (5.4.3.2) and non-functional software requirements

 Specification of performance criteria (4.3.4.2, 5.4.3.3)

o Speed, response time, recovery time, etc.

 Specification of necessary margin of resources (e.g. memory, CPU load, etc.) for

safety purposes (4.3.13.1)

 Specification of robustness, capacity and overload tolerance of the softwareSWAL3

(5.4.3.5, 5.4.3.11, 5.4.3.12)

 Specification of correct and accurate algorithms used in the softwareSWAL3

(5.4.3.10)

 Definition of operational environment and derived requirements (5.4.3.8)

 Definition of configuration/adaption data ranges (4.3.4.2)

 Definition of general requirements (standard specifications, programming

languages (and their justification to the SWALSWAL2), coding guidelines tools, etc.)

(4.3.3.3, 4.3.4.3, 4.3.19.1, 4.3.19.2, 5.4.3.9)

o Verification of software development toolsSWAL1 (4.3.19.4)

 Analysis of software safety requirements

 Ensuring of consistency to system requirements (4.3.4.2, 4.3.15.1, 5.4.10.1)

 Execution of inspections and reviews (3.4.1.1, 4.3.4.2)

Software Design:

 Characterisation of interfaces, dependencies between componentsSWAL3 (4.3.14.1)

Annex B: Adapted Integrated Process Model

127

 Definition of software architectureSWAL3 (4.3.5.1)

o Use of standard architectures or analysing and evaluation of different

architectures

o Documentation of the basis of decision-making

o Use of design tool (4.3.17.1)

o Execution of feasibility study on software design testing and maintenance

(5.4.5.7, 5.4.5.8)

 Definition of software integrationSWAL3 (4.3.5.1)

 Definition of real-time features (if applicable)SWAL3 (4.3.14.1)

o Tasks and runtime aspects, interruptions, treatment and propagation of

errors, data management and initialisation/stop of software

 Definition interfacesSWAL3 (4.3.5.1)

o Specification of internal and external interfaces

o Definition of input and output data

 Analysis of testabilitySWAL3 (5.4.5.3, 5.4.5.5)

o Check design for correctness (design reviews)SWAL3 (5.4.5.4, 5.4.5.7, 5.4.5.8)

o Definition of verification coverage and criteria of completenessSWAL3 (5.4.5.3,

5.4.5.9)

o Implementation of unit testsSWAL2 (4.3.6.1)

o Development of test concept and creation of test plan (activities of test

group)SWAL3 (5.4.5.5, 5.4.5.9)

 Ensuring consistency to system requirements and system design (traceability)SWAL3

(4.3.15.2, 5.4.5.1, 5.4.5.2, 5.4.10.2)

 Ensuring conformance to safety standard specifications and expected resultsSWAL3

(5.4.5.6)

 Documentation of the results of software design phaseSWAL3 (5.4.5.10)

Software Component Design:

 Development of component designSWAL2 (4.3.6.1)

o Grouping of software components into programming elements (modules)

o Describing of module functionalities, their dependencies and interfaces

(5.4.6.2)

o Definition of detailed functions, used algorithms, in- and output data, used

data formats, memory usage, etc. (5.4.6.6)

o Definition of required standard specifications and general requirements

(5.4.6.4)

 Execution of feasibility study on software code verification and maintenanceSWAL2

(5.4.6.7, 5.4.6.8)

 Definition of verification coverageSWAL2 (5.4.6.3)

 Ensuring consistency to software architecture (traceability)SWAL2 (5.4.6.1, 5.4.10.3)

Annex B: Adapted Integrated Process Model

128

 Documentation of the results of software detailed design phaseSWAL2 (5.4.6.9)

 Execution of reviewsSWAL2 (5.4.6.5)

Software Construction:

 Evaluation of executable code, including internal and external consistency, the

verification of the translation from source into object code, the feasibility of the

executable and the verification of the software structureSWAL1 (5.4.8.1)

 Compliance with documentation guidelinesSWAL1 (5.4.8.2)

 Put source code under configuration managementSWAL4

 Ensuring traceability between software component design and codeSWAL2 and

between code and executableSWAL1 (4.3.15.3, 4.3.15.4, 5.4.10.4)

Software Component Test:

 Development of component test specifications

 Execution of component tests

o Documentation of test results and failures

 Execution of regression tests

Software Integration:

 Development and planning of integration strategySWAL3 (4.3.7.1, 4.3.7.2)

o Planning of integration activities including their corresponding software

components

 Development of integration tests and their specificationsSWAL3 (4.3.7.2)

 Execution of documentation reviews and inspectionsSWAL3 (4.3.7.3)

 Integration of software modules according to an integration planSWAL3 (5.4.4.4)

 Testing of integrated software modules

o Ensuring completeness and correctness of integration of software units into

software componentsSWAL3 and further into integrated softwareSWAL2 (5.4.4.1,

5.4.4.2)

o Ensuring completeness and correctness of integration hardware and

softwareSWAL3 (5.4.4.3)

 Ensuring consistency between software design and software integration

 Ensuring traceability between safety assurance and the version of software being

deployed (5.4.10.6)

Software Test:

 Development of test strategy and plan

 Creation of test specification based on requirements specification (5.4.10.5)

o Definition of test procedures, test cases and test data

Annex B: Adapted Integrated Process Model

129

 Execution of software tests (3.4.4.1)

o Testing software against verification criteriaSWAL3 (4.3.13.2)

o Documentation of test results and failures

 Execution of regression tests

 Execution of document reviews

System Integration:

 Development and planning of integration strategy (4.3.8.1)

 Deposition of software resource file and documentation of installation procedure

(4.3.8.2)

 Integration of system elements

 Development of tests for system elementsSWAL3 (4.3.13.2)

 Ensuring that previously defined complexity is metSWAL2 (5.4.11.1, 5.4.11.2)

 Ensuring consistency (traceability)SWAL2 (5.4.11.1, 5.4.11.2)

System Test:

 Development of test strategy and plan

 Execution of system tests

o Documentation of test results and failures

 Execution of regression tests

 Execution of document reviews

Supporting Processes

Quality Assurance:

 Development of approach (5.3.1.1)

o Definition of target items (work products, process step, etc.) (5.3.1.2)

o Definition according to which goals are tested (5.3.1.2)

o Planning of quality assurance activities (5.3.1.3)

 Ensuring that software safety assessment results are documented and

disseminated to impacted parties (3.5.1.1, 3.5.3.1)

 Definition of quality recordings (5.3.1.2)

 Execution of compliance tests (quality audits) (5.3.2.1, 5.3.2.2, 5.3.3.1, 5.3.3.2)

o Documentation and dissemination of results

o Evaluation of deviations and triggering of corrective measures

Annex B: Adapted Integrated Process Model

130

Verification:

 Development of verification strategy (5.4.1.1)

o Definition of used methods, techniques and tools (5.4.2.2)

o Definition of work products and processes, which should be verified (5.4.2.2)

o Planning of verification activities (5.4.2.1)

 Development of verification criteria (5.4.2.2)

 Ensuring verification of verification (5.4.12.1)

 Execution of verification and documentation of results (5.4.1.2)

o Dissemination of results to relevant stakeholders (5.4.1.2, 5.4.2.3)

Configuration Management:

 Development of configuration management strategy and plan (5.2.1.1, 5.2.1.2)

 Definition of software lifecycle environment control management and software

lifecycle data (5.2.1.2)

 Identification of configuration elements and their required degree of maturity

(especially software safety documents, technical reviews and inspections and the

configuration management plan itself) (3.5.2.1, 4.3.3.1, 5.2.1.3, 5.2.2.1, 5.2.2.3)

 Definition of a retrieval and release process, which is documented and formally

controlled and which has master copies that are maintained for the whole product

life cycle (5.2.6.1, 5.2.6.2, 5.2.6.3, 5.2.6.4)

 Use of a configuration management tool (5.2.7.1)

 Definition of the depth level, where configuration management is performed (either

on software unitSWAL3 or software source codeSWAL2 level) (5.2.9.1, 5.2.11.1)

 Execution of reviews (5.6.3.1)

 Creation of baselines (5.2.2.2)

 Describing of configuration elements (especially versions, etc.) (5.2.2.2)

 Steering of changes (5.2.2.2)

 Ensuring traceability of software lifecycle data and versions of software being

deployed (5.2.10.1, 5.2.10.2)

 Providing management records and status reports on controlled software, including

baselines and information on release process (5.2.4.1, 5.2.4.2)

Change Management:

 Set up of a change management audit trail including details on each modification

and access to controlled software (5.2.3.2, 5.2.3.3)

 Discussion of change requests (5.2.3.1)

 Analysis of change requests by experts (5.2.3.1, 5.2.5.1)

 Rejection or approval of change request through change control board (5.2.3.1)

Annex B: Adapted Integrated Process Model

131

Compliance Analysis Results

Based on the evaluation of compliance (see chapter 8.6) of the agile procedure model to

the adapted ISaPro® framework, the following analysis has be performed:

How many activities have to be achieved…

 …per lifecycle of the ISaPro® framework?

 …per agile procedure model phase?

 …per SWAL?

The following analysis results considered only major activities of the adapted ISaPro®

framework in Annex B. If one activity is required for multiple SWAL, but in different

granularity, this activity is mapped to the less rigorous SWAL.

Project Management Lifecycle

Phase SWAL 4 SWAL 3 SWAL 2 SWAL 1 Sum

Pre-game 24 1 25

Iteration-driven 15 1 16

Spin-off 13 1 14

Wrap-up 13 1 14

Table 14: Analysis Results of Project Management Lifecycle

Safety Lifecycle

Phase SWAL 4 SWAL 3 SWAL 2 SWAL 1 Sum

Pre-game 22 1 23

Iteration-driven 19 19

Spin-off 1 1

Wrap-up 1 1

Table 15: Analysis Results of Safety Lifecycle

Engineering Lifecycle

Phase SWAL 4 SWAL 3 SWAL 2 SWAL 1 Sum

Pre-game 25 9 1 35

Iteration-driven 36 17 9 2 64

Spin-off 15 3 2 20

Wrap-up 15 3 2 20

Table 16: Analysis Results of Engineering Lifecycle

Annex B: Adapted Integrated Process Model

132

Supporting Processes

Phase SWAL 4 SWAL 3 SWAL 2 SWAL 1 Sum

Pre-game 8 1 9

Iteration-driven 19 19

Spin-off 14 14

Wrap-up 14 14

Table 17: Analysis Results of Supporting Processes

	Acknowledgement
	Abstract
	Abbreviations and Acronyms
	Table of Contents
	1 Introduction and Purpose
	1.1 Background
	1.2 Research Objectives
	1.3 Research Method
	1.4 Related Work
	1.5 Overview

	2 Safety Aspects in Software Development
	2.1 Terminology
	2.1.1 Safety
	2.1.2 System Safety
	2.1.3 Hazards
	2.1.4 Safety-critical Systems
	2.1.5 Safety Integrity Level (SIL)
	2.1.6 Threats: Faults, Errors and Failures
	2.1.7 Safety Management

	2.2 Software Safety
	2.2.1 Relevance
	2.2.2 Challenges

	2.3 Safety Standards
	2.4 Safety Analysis Methods & Techniques
	2.4.1 Preliminary Hazard Analysis (PHA)
	2.4.2 Failure Mode and Effective Analysis (FMEA)
	2.4.3 Hazard and Operability Study (HAZOP)
	2.4.4 Fault Tree Analysis (FTA)

	2.5 Safety Case

	3 EUROCAE ED-153 Guidance
	3.1 Purpose and Scope
	3.2 Software Assurance Level
	3.3 Software Safety Assurance System
	3.3.1 Software Safety Assurance System
	3.3.2 Software Safety Assurance Process

	3.4 Lifecycle Processes

	4 Integrated Process Model
	4.1 Project Management Lifecycle
	4.2 Engineering Lifecycle
	4.3 Safety Lifecycle
	4.3.1 Preliminary Hazard Identification (PHI)
	4.3.2 Functional Hazard Evaluation (FHE)
	4.3.3 Preliminary System Safety Evaluation (PSSE)
	4.3.4 Software Safety Requirements Analysis (SSRA)
	4.3.5 Software Safety Design Analysis (SSDA)
	4.3.6 System Safety Evaluation (SSE)

	4.4 Support Processes

	5 Agile Software Development Methods
	5.1 Values and Principles
	5.1.1 Values
	5.1.2 Principles

	5.2 Technical Practices
	5.2.1 User Stories
	5.2.2 Test-driven Development
	5.2.3 Refactoring
	5.2.4 Evolutionary Design
	5.2.5 Continuous Integration
	5.2.6 Pair Programming
	5.2.7 Collective Code Ownership

	5.3 Approaches
	5.3.1 Extreme Programming (XP)
	5.3.2 Scrum

	5.4 Scientific Research
	5.5 Interdependencies with Traditional Approaches
	5.5.1 Introduction to Traditional Approaches
	5.5.2 Combination of Agile and Traditional Methods

	6 ED-153 Objective Mapping
	6.1 Objective Mapping Method
	6.2 Integrated Process Lifecycle Overview

	7 Safety Versus Agile Principles
	7.1 Evaluation
	7.2 Synergies
	7.2.1 Social Factors
	7.2.2 Process Factors
	7.2.3 Technical Practices

	7.3 Conflicts
	7.3.1 Agile Values
	7.3.2 Process Factors
	7.3.3 Technical Practices

	8 Agile Procedure Model
	8.1 Preconditions and Constraints
	8.2 Pre-game Phase
	8.2.1 Workshop Organisation
	8.2.2 Part One: Creation of the System or the Product Vision
	8.2.3 Part Two: Development of the Technical Concept
	8.2.4 Part Three: Performance of the First Safety Analyses
	8.2.5 Outputs

	8.3 Iteration-driven Phase
	8.3.1 Responsibility Assignment
	8.3.2 Product Architecture Team
	8.3.3 Software Development Team
	8.3.4 Documentation
	8.3.5 Overall Picture

	8.4 Spin-off Phase
	8.4.1 Test System Delivery
	8.4.2 Operational Delivery

	8.5 Wrap-up Phase
	8.6 Compliance to Adapted ISaPro® and EUROCAE ED-153
	8.7 Evaluation of Agile Procedure Model
	8.7.1 Proof of Agility
	8.7.2 Advantages & Disadvantages
	8.7.3 Applicability

	9 Summary
	Glossary
	Bibliography
	List of Figures
	List of Tables
	Annex A: EUROCAE ED-153 Mapping Tables
	Legend
	Software Safety Assurance System
	Software Safety Assessment Initiation
	Software Safety Assessment Planning
	Software Safety Requirements Specification
	Software Safety Assessment Validation, Verification and Process Assurance
	Software Safety Assessment Completion
	Summary

	Primary Lifecycle Processes
	Development Process
	Summary

	Supporting Lifecycle Processes
	Configuration Management
	Quality Assurance Process
	Verification Process
	Validation Process
	Joint Review Process
	Summary

	Organisational Lifecycle Processes
	Management Process
	Summary

	Annex B: Adapted Integrated Process Model
	Project Management Lifecycle
	Safety Lifecycle
	Engineering Lifecycle
	Supporting Processes
	Compliance Analysis Results

