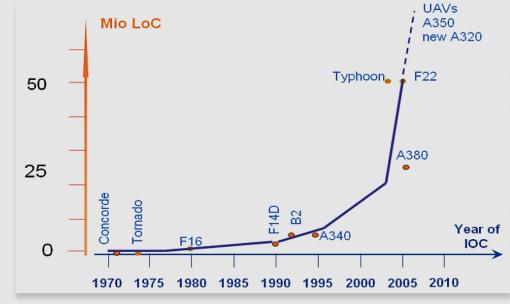


Agile Process Framework for Projects in the Safety Critical Field

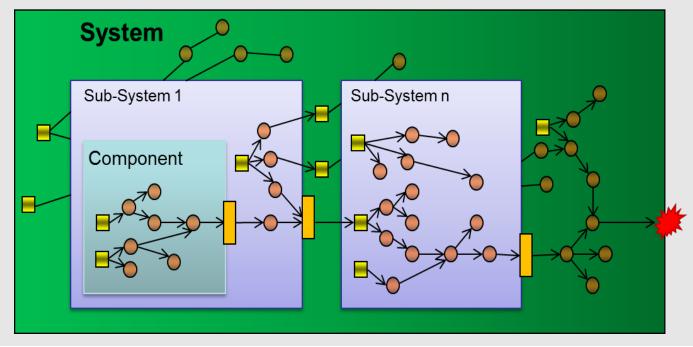
Dr. Hans Tschürtz Christoph Schmiedinger


Introduction

- > Change in the domain of safety-critical applications
 - > Safety compliance, quality, and reliability are a matter of course
 - > Increasing focus on functional requirements
 - > Demand of more flexibility
- > Safety specifications recommend sequential development models
 - > IEC 61508, ISO 26262, ...
 - > Prejudices against agile approaches

Problem Statement 1/3

- > Complexity of technical systems increases exponentially
- > Growing number of computer-based control devices that are mutually strongly coupled (Tight Coupling)
- > More and more control functions and featured are realised with software



Problem Statement 2/3

- > Number of inherent faults and errors increases, as well as the number of system conditions
- > Incidents and accidents occur, caused by the interaction of several causes

Problem Statement 3/3

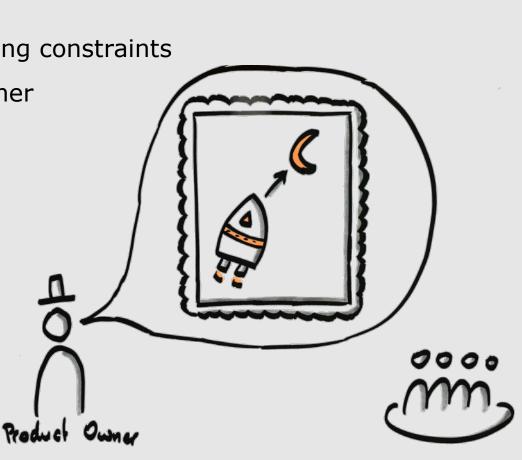
- > "Seldom does a single hazard cause an accident. More often, an accident occurs as the result of a sequence of causes termed initiating and contributory hazards." [FAA System Safety Handbook]
- > "[...] the probability of any one specific combination of failures will be extremely low, but as experience shows, this is precisely what leads to major accidents." [Holzmann: Conquering Complexity]
- System failure can come from the interaction of sub-systems deficiencies which individually do not produce an end system failure but may do in combination." [Sundaram P., Hartfelder D.: Rigor in Automotive Safety Critical System Development]
 - → Increasing system complexity and tight coupling leads to non-predictable system states that can lead to

System Accidents (Change in the nature of Accidents)

Caused by "Flawed Requirements"

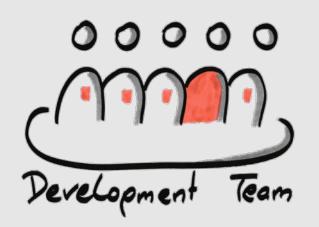
What do we need?

- > A flexible approach that meets new challenges while suitable for managing complex systems
 - > Identification of hazards in early stages
 - > Continuous evaluation of the development direction
 - > Preventive avoidance of hazards instead of controlling them
 - > Possibility for changes in every development stage
- > Skilled people that have
 - > knowledge in engineering disciplines and safety
 - > the ability to imagine a holistic picture of the whole system on organisational and on engineering level


But now: let's start!

Project Goals

- > It's all about a vision
 - > ... and the underlying constraints
- > Role of the product owner
 - > Visionary



How to achieve?

> Need for a cross-functional agile team

- > Cross-functional means that the team needs all the skills to build a potentially shippable product
 - > In a safety-critical environment this calls for a team member who is a safety expert (e.g. a safety engineer)
 - > Safety is like quality a matter of all team members
- > The product is only valuable if it is safe
 - > Therefore this assurance has to be made in every iteration

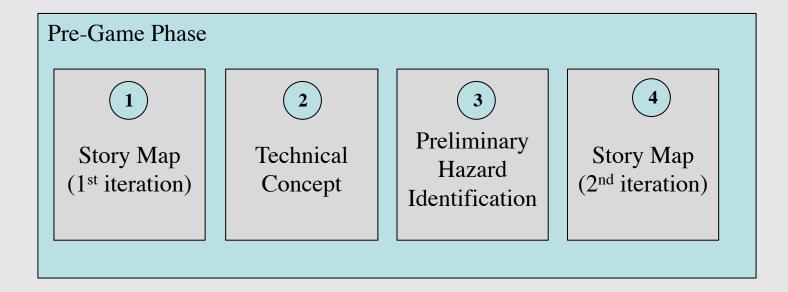
Skills of the safety expert

- > Knowledge of relevant norms and standards (e.g. ISO 26262)
- > Knowledge of safety and hazard analyse methods

>

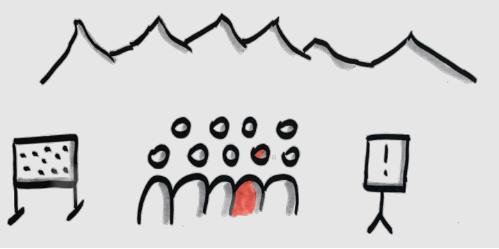
> VIENNA INSTITUTE FOR

SAFETY & SYSTEMS ENGINEERING



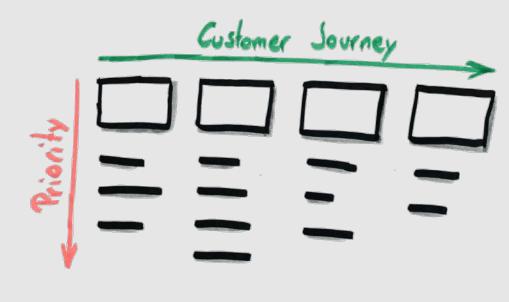
The "Pre-Game" Phase

- > Every good project needs a solid foundation
 - > ... but we don't believe that months of analysing and designing is the right approach

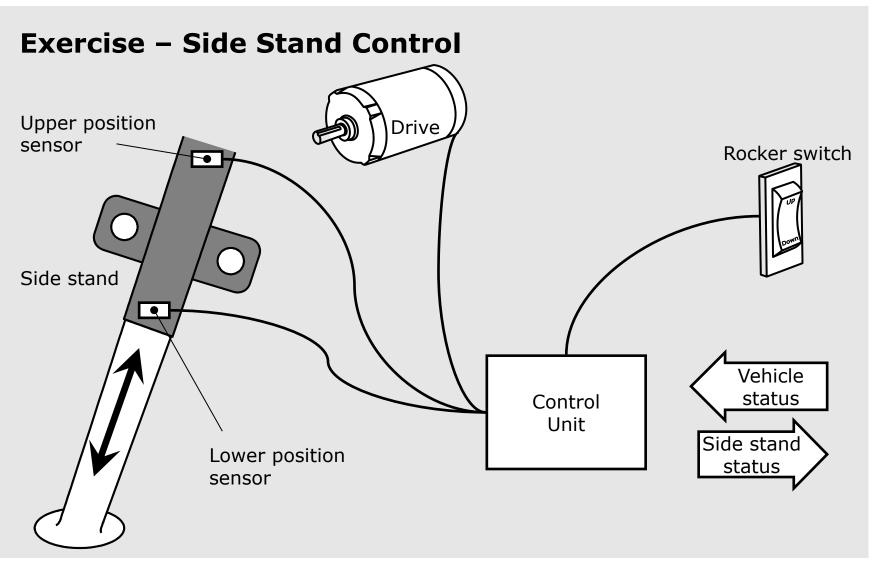


"Pre-Game" Phase – Organisational Set-up

- > Involvement of all experts (at minimum the whole development team)
 - > Optional: additional experts of various disciplines
- > Concentrated workshop-atmosphere
- > Off-site in order to ensure the necessary focus



Pre-Game Phase


Step 1

Story Map (1st iteration)

- > Modelling of a customer journey
 - > ... or a process-/ state-oriented sequence of steps
- > Define containers
- > Define high-level functionalities

Exercise – Legal requirements

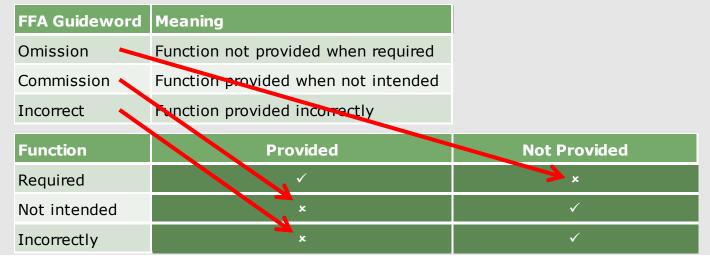
- > Council Directive 93/31/EEC on stands for two-wheel motor vehicles
- > The vehicle shall be designed in such a way that it cannot be propelled by its engine when the prop stand is extended.
- > The side stand shall not retract automatically if the angle of lean is altered unexpectedly or the vehicle is being left unattended in its parking position.

Technical Concept

- > Input: Story Map
- > Use of the Shell Model
- > Modelling of a system architecture
 - > Interfaces, controller, drivers, sensors, actors, ...

Pre-Game Phase

Step 3

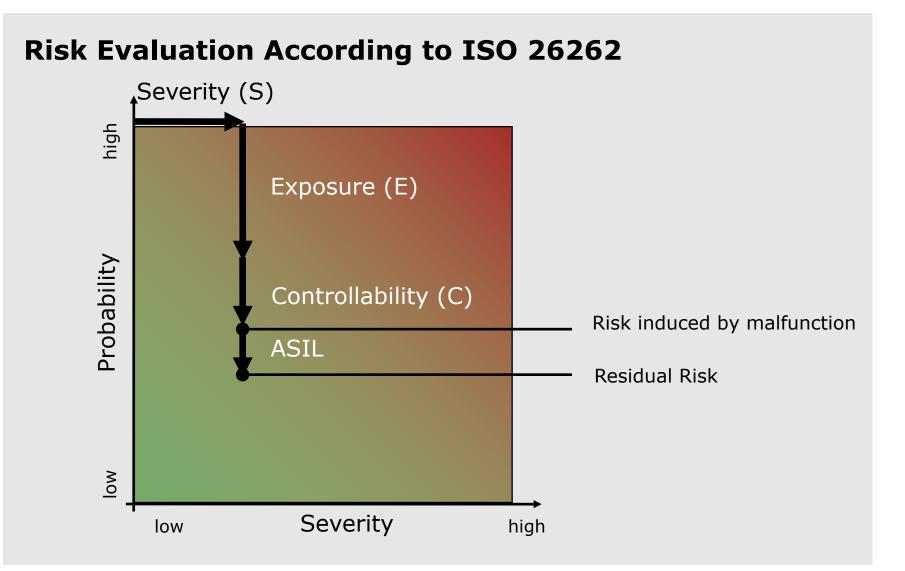

Preliminary Hazard Identification

- > Input: Technical concept and hazard checklist (if available)
- > Activities
 - > Identify hazards and their possible causes
 - > Assign risk to causes
 - > Identify Automotive Safety Integrity Level (ASIL)
 - > Specify countermeasures when risk is too high
- > Output: Safety Concept (including safety requirements)

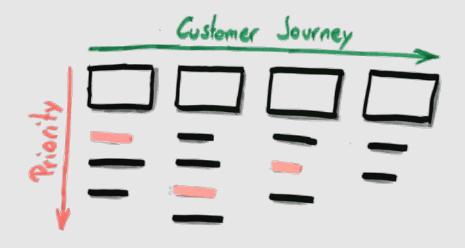
FFA (Functional Failure Analysis) – Overview

- > Deviations of a system from its intended functions / behaviour are considered
- > Combinations of FFA guidewords produce the deviations, which are postulated for the system
- > Identification of the theoretical causes and effects resulting from those deviations
- > Usually restricted on borders of the (sub-)system under consideration

© Christoph SCHMIEDINGER, Hans TSCHÜRTZ


FFA Example – Power Window

Function	Guideword	Effect
1. Power window closes	Omission	window does not close
	Commission	window closes unintentionally (without request)
	Incorrect	window closes insufficiently or jitters
2. <function></function>	Omission	
	Commission	
	Incorrect	
3. <function></function>	Omission	
	Commission	
	Incorrect	


Pre-Game Phase

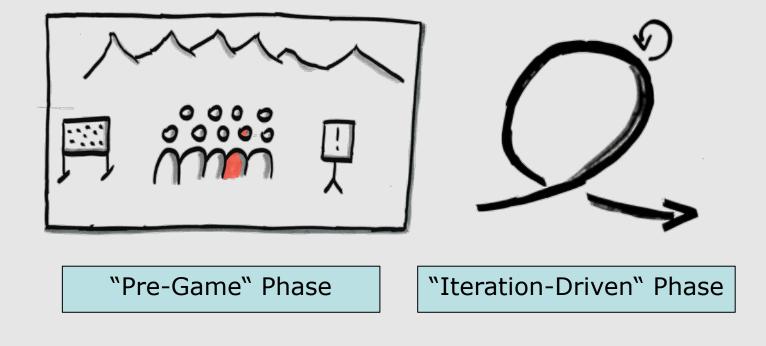
Step 4

Story Map (2nd iteration)

> Update of the recently created story map based on new insights
 > Especially safety measures must be represented

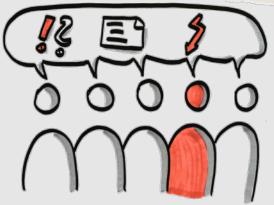
Story map is the foundation for the first product backlog
 Modelling of the first user stories for the first 2-3 iterations

The Foundation is laid


... but what's next?

"Iteration"-Driven Phase

> The team(s) start their sprints by implementing user story after user story



Impact Assessment

> Every new user story requires an impact assessment

- > What is the impact of the new functionality on the safety concept?
- > Are there new hazards introduced?
- > First impacts can be identified during the conversation of user stories in the backlog refinement meeting, in sprint planning I or II


Iteration Work

> Within the iteration all the necessary actions are performed
 > Update of the safety concept (safety case, ...)
 > Derive of new safety requirements/measures

> Definition of Done

- > Helpful "tool" in order to verify if all necessary actions have been taken
 - > Example items
 - > Impact Assessment
 - > Specific safety analysis
 - > Update of safety/design documents
 - > Automated tests
 - > Tracing of documentation items

> VIENNA INSTITUTE FOR SAFETY & SYSTEMS ENGINEERING

UNIVERSITY OF APPLIED SCIENCES

Assurance

Preconditions and Success Factors

- > Agile model needs a great deal of discipline
- > Well organized way of working
- > Interdisciplinary development teams
- > Preliminary workshop activities are crucial for the success of the project
- > Transition of the organisation to agile approaches
- > Responsible usage of modern technical practices

Learning Outcomes

- > Efficient pre-project Workshop
 > Story Mapping, Shell Modelling and Safety Analyses
- > Interdisciplinary Teams> Need for safety engineer
- > Impact Assessment & Definition of Done > It's all about discipline

Thank you for your attention.

Safe Systems for a Safer World!

> Christoph Schmiedinger

> Dr. Hans Tschürtz

christoph.schmiedinger@borisgloger.com

hans.tschuertz@fh-campuswien.ac.at